人工智能行业研究报告

人工智能行业研究报告

涵盖AI基础技术及终端产品

研究范围:

人工智能是一门综合了计算机科学、生理学、哲学的交叉学科。

是使用机器代替人类实现认知、识别、分析、决策等功能,均可认

为使用了人工智能技术。作为一种基础技术,人工智能在很多行业

都有用武之地。既有人工智能+基础行业的概念(如人工智能+金融

=Fintech),也有其具体应用行业的概念(比如机器人)

按照技术应用的不同场景,可以将人工智能分为基础技术类及终端

产品类,本报告研究范围涵盖以下领域:

研究目的:

本报告将集中探讨:

„ 人工智能行业整体的发展现状与技术发展趋势

„ 各细分领域投融资热度与技术成熟度

„ 巨头在人工智能领域的布局与策略

„ 各应用领域市场规模、竞争格局、进入壁垒、产业链上下游构成

„ 行业标杆的商业模式、核心竞争力、未来发展预期


目 录 Contents

一、人工智能行业驱动力

1. 行业驱动——数据量、运算力、算法技术

2. 政策法规

3. 投资热度

国际投资热度分析

国内投资热度分析

国内公司运营数据分析

二、人工智能产业链与巨头布局分析

1. 产业链构成

2. 巨头布局

开源平台布局

芯片布局

技术布局

一、人工智能行业概述

三、人工智能基础应用介绍与典型公司分析

1. 语音识别

2. 语义识别

3. 计算机视觉目 录 Contents

五、人工智能在各行业的应用介绍与典型公司分析

1. 机器人

2. AI+金融

3. AI+医疗

4. AI+安防

5. AI+家居

六、人工智能芯片介绍与典型公司分析

六、人工智能行业趋势展望

1. 人工智能各行业综述

2. 人工智能当前发展瓶颈

四、人工智能芯片介绍与典型公司分析

1. 人工智能芯片适用性分析

GPU

FPGA

ASIC

2. 人工智能芯片产业链分析

3. 人工智能芯片典型公司分析

人工智能行业概述

CHAPTER 1

行业驱动——数据量、运算力、算法技术

政策法规

投资热度

国际投资热度分析

国内投资热度分析

国内公司运营数据分析6

36Kr-人工智能行业研究报告

2017年2月

数据量、运算力和算法模型是影响人工智能行业发展的三大要素。

2000年之后,数据量的上涨、运算力的提升和深度学习算法的出现

极大的促进了人工智能行业的发展。

海量数据为人工智能发展提供燃料

要理解数据量的重要性,得先从算法说起。数据量和算法可以分别

比作人工智能的燃料和发动机。算法是计算机基于所训练的数据集

归纳出的识别逻辑,好的算法模型可以实现精准的物体和场景识别

。数据集的丰富性和大规模性对算法训练尤为重要。因此可以说,

实现机器精准视觉识别的第一步,就是获取海量而优质的应用场景

数据。以人脸识别为例,训练该算法模型的图片数据量至少应为百

万级别。

2000年以来,得益于互联网、社交媒体、移动设备和廉价的传感器

,这个世界产生并存储的数据量急剧增加,这为通过深度学习的方

法来训练计算机视觉技术提供很好的土壤。IDC数据显示,从2011

年起,全球所产生的数据量已达到ZB级别(1ZB约为10亿GB ),海

量的数据将为计算机视觉算法模型提供远远不断的素材。而关于数

据量对提高算法准确率方面的重要性,更有学者提出:“It’s not

who has the best algorithm that wins. It’s who has the

most data. ”

行业驱动力 · 数据量

海量数据为人工智能发展提供燃料

大数据

训练模型 应用于具体场景

算法模型 场景应用

0

10

20

30

40

50

来源:IDC,36氪研究院

2020

数据量与准确率之间的关系 2009-2020年全球总体数据量(单位:ZB)

2009

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000

测试字符数量

Window Memory-Based

Perceptron Naïve Bayes

说明:window、memory-based、perceptron、naive bayes 均为不同算法

来源:Stanford机器学习公开课,36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析

7

36Kr-人工智能行业研究报告

2017年2月

人工智能领域是一个数据密集的领域,传统的数据处理技术难以满

足高强度、大数据的处理需求。 AI芯片的出现让大规模的数据效率

大大提升,加速了深层神经网络的训练迭代速度,极大的促进了人

工智能行业的发展。

AI算法的处理需要大量的矩阵计算操作,因此特别适合使用并行运

算芯片进行数据处理。而传统的CPU一次只能同时做一两个加减法

运算,无法满足并行运算的需求。目前,出现了GPU、NPU、

FPGA和各种各样的AI-PU专用芯片。而其中, 出现最早的GPU为

人工智能的发展做出了巨大的贡献。

擅长并行计算的GPU大幅提升机器学习效率。在GPU出现之前,算

法运行的速度是很慢的,即使是一个简单的神经网络数据的培训,

也得花费几天、甚至几周的时间。 1999 年,Nvidia 公司在推销

Geforce 256 芯片时,提出了GPU( 图像处理器) 概念。GPU是专

为执行复杂的数学和集合计算而设计的数据处理芯片。它的出现让

并行计算成为可能,对数据处理规模、数据运算速度带来了指数级

的增长,极大的促进人工智能行业,尤其计算机视觉领域的发展。

GPU与传统CPU相比,在处理海量数据方面有压倒性的优势。

Rajat Raina 与吴恩达的合作论文 “用 GPU 进行大规模无监督深

度学习” 显示,在运行大规模无监督深度学习模型时,使用 GPU

和使用传统双核 CPU 在运算速度上的差距最大会达到近七十倍

在一个四层,一亿个参数的深度学习网络上,使用 GPU 将程序运

行时间从几周降低到一天。

今天,数据处理速度不再成为制约计算机视觉发展的主要瓶颈。想

要发挥专用芯片的计算优势,需要芯片结构和软件算法两者相匹配

。目前的趋势是,随着对人工智能各类应用需求的不断增强,专门

用于加速人工智能应用的AI-PU或将成为计算机另一个标配组件。

行业驱动 · 运算力

运算力的提升大幅推动人工智能发展

世界上第一款GPU-GeForce 256 中科寒武纪即将投产的 “寒武纪”NPU Altera的高端FPGA 产品 Stratix 10

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析8

36Kr-人工智能行业研究报告

2017年2月

在深度学习出现之前,机器学习领域的主流是各种浅层学习算法

如神经网络的反响传播算法(BP算法)、支撑向量机(SVM)、

Boosting、Logistic Regression等。这些算法的局限性在于对有限

样本和计算单元的情况下对复杂函数的表示能力有限,对复杂数据

的处理受到制约。以计算机视觉为例,作为一个数据复杂的领域,

浅层学习算法的识别准确率并不高。该类识别原理多为通过寻找合

适的特征来让机器辨识物品状态,由于这个处理逻辑是浅层的,不

能穷举各种复杂的情境,因而算法拟合的准确率不高。

深度学习突破人工智能算法瓶颈。2006年,Geoffrey Hinton 和合

作者发表论文,“A fast algorithm for deep belief nets”,此后

“Deep Learning(深度学习)”的概念被提出。

以计算机视觉为例,深度学习出现之前,基于寻找合适的特征来让

机器辨识物体状态的方式几乎代表了计算机视觉的全部。尽管对多

层神经网络的探索已经存在,然而实践效果并不好。深度学习出现

之后,计算机视觉的主要识别方式发生重大转变,自学习状态成为

视觉识别主流。即,机器从海量数据库里自行归纳物体特征,然后

按照该特征规律识别物体。图像识别的精准度也得到极大的提升,

从70%+提升到95%。

在短短几年时间里,深度学习颠覆了语音识别、语义理解、计算机

视觉等基础应用领域的算法设计思路,逐渐形成了从一类训练数据

出发,经过一个端到端的模型,直接输出最终结果的一种模式。

于深度学习是根据提供给它的大量的实际行为(训练数据集)来自

我调整规则中的参数,进而调整规则,因此在和训练数据集类似的

场景下,可以做出一些很准确的判断。

行业驱动力 · 算法

深度学习突破人工智能算法瓶颈

72.00% 74.50%

84.70%

89.00%

93.00% 95.00%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015

2010-2015年 ImageNet 比赛图像识别准确率

注释:ImageNet是计算机视觉系统识别项目。

来源:36氪研究院

过去 现在 未来

Google translate语义识别准确率

60%

83.4%

注释:Google translate是语义识别项目。

来源:36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析9

36Kr-人工智能行业研究报告

2017年2月

其他国家人工智能相关政策

各国均在政策层面强调和推动人工智能的发展。其中,美国侧重于

研发新型脑研究技术;欧盟主攻以超级计算机技术来模拟脑功能;

日本则聚焦以动物为模型研究各种脑功能和脑疾病的机理。

政策法规 · 国外

政策加码,人工智能发展如火如荼

国家 相关措施

美国

2013 年4 月,美国正式公布“推进创新神经技术脑

研究计划”(BRAIN)。得到政府拨款1.1 亿美元,

覆盖美国国家卫生研究院(HIN)、国防部高级研究

项目局、国家科学基金会。

2014 年HIN 小组制定了未来十年详细计划,预计每

年投入3-5 亿美元开发用于监测和映射大脑活动和结

构的新工具,十年计划共花费45 亿美元。

欧盟

2013 年初,欧盟宣布了未来十年的“新兴旗舰技

术项目”——人脑计划(HBP),该项目汇聚了来自

24 个国家的112 家企业、研究所和高校等机构,总投

资预计将达到12 亿欧元。计划在2018 年前开发出第

一个具有意识和智能的人造大脑.

日本

2014 年9 月启动大脑研究计划Brain/MINDS。该计划

为期10 年,由日本理化学研究所主导实施,旨在理解

大脑如何工作以及通过建立动物模型,研究大脑神经回

路技术,从而更好地诊断以及治疗大脑疾病。

来源:36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析10

36Kr-人工智能行业研究报告

2017年2月

国内人工智能相关政策

国内近几年也出台了相关扶植人工智能发展的政策,积极推动人工

智能在各个细分领域的渗透。2016年5月,国家四部委更是颁布《

“互联网+”人工智能三年行动实施方案》,明确提出要培育发展

人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智

能化水平。

政策法规 · 国内

政策加码,人工智能发展如火如荼


实施时间 颁布主体 法律法规 相关内容

2015.5 国务院 《中国制造2025》

提出“加快发展智能制造装备和产品”,指出“组

织研发具有深度感知、智慧决策、自动执行功能的

高档数控机床、工业机器人、增材制造装备等智能

制造装备以及智能化生产线,统筹布局和推动智能

交通工具、智能工程机械、服务机器人、智能家电、

智能照明电器、可穿戴设备等产品研发和产业化。”

2015/7/4 国务院

《国务院关于积极推进

“互联网+”行动的指导

意见》

明确提出人工智能作为11个重点布局的领域之一,

促进人工智能在智能家居、智能终端、智能汽车、

机器人等领域的推广应用。

2015/7/9 中央办公厅、

国务院

《关于加强社会治安防控

体系建设的意见》

加大公共安全视频监控覆盖,将社会治安防控信息

化纳入智慧城市建设总体规划,加深大数据、云计

算和智能传感等新技术的应用。

2016.1 国务院 《“十三五”国家科技创

新规划》

智能制造和机器人成为“科技创新-2030 项目”重

大工程之一。

2016/3/18 国务院

《国民经济和社会发展第

十三个五年规划纲要(草

案)》

人工智能概念进入“十三五”重大工程。

2016/5/18

国家发展改革

委、科技部、

工业和信息化

部、中央网信

《“互联网+”人工智能

三年行动实施方案》

明确了要培育发展人工智能新兴产业、推进重点领

域智能产品创新、提升终端产品智能化水平,并且

政府将在资金、标准体系、知识产权、人才培养、

国际合作、组织实施等方面进行保障。

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析11

36Kr-人工智能行业研究报告

2017年2月

融资规模与成立公司数量总览

咨询公司Venture Scanner统计,截止2016年Q2,全球人工智能

公司已突破1000家,跨越13个子门类,融资金额高达48亿美元。

而人工智能创投金额在5年间增长了12倍。

投资热度 · 全球

全球AI领域融资金额5年增长12倍

62 96 66 68 64 138 125 102 186 283 211 141 321 555 394 942 769 398 911 485 6361,049

11

21

13

22 20

38 37 38 43 50

63

47

70 77 84 80

92

84

120

100

134

推荐文章

人工智能数据标注产业国家政策梳理:行业已上升至国家战略 时间:2021-02-18    来源:消费日报网人工智能作为新一轮产业变革的核心驱动力,将进一步创造新的引擎,重构生产、分配、交换、消费等经济活动各环节,催生新技术、新产品、新产业、新业态、新模式。  近年来,我国政府高度重视人工智能的技术进步与产业发展,目前人工智能已上升国家战略。在全国人大常委会中提到要加强立法理论研究,重视对人工智能、区块链、基因编辑等新技术新领域相关法律问题的研究。  人工智能技术的应用正在改变着我们的生活。而在人工智能产业高速发展的背后,数据标注师这个新职业的需求及人数也正在壮大。数据标注行业流行着一句话,“有多少智能,就有多少人工”。目前AI算法能学习的数据,必须通过人力逐一标注,这些人力被称为“人工智能的老师”为人工智能搭建基础。 AI优评希望能有更多的识之士,关注并加入到人工智能-数据标注行业,共同参与和推进行业发展!  全国人工智能数据标注产业  相关政策汇总  2015.05  政策:《中国制造2025》  要点:首次提及智能制造,提出加快推动新一代信息技术与制造技术融合发展,把智能制造作为两化深度融合的主攻方向,着力发展智能装备和智能产品,推动生产过程智能化。  2015.07  政策:《关于积极推进“互联网+”行动的指导意见》  发布机关:国务院  要点:该《指导意见》中将人工智能作为其主要的十一项行动之一。明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;要进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。  2016.03  政策:国务院《国民经济和社会发展第十三个五年规划纲要(草案)》  发布机关:国务院  要点:人工智能概念进入“十三五”重大工程。  2016.04  政策:机器人产业发展规划(2016-2020年)  发布机关:工业和信息化部、国家发展改革委、财政部等三部委  要点:2020年具体目标如下:  产业规模持续增长。自主品牌工业机器人年产量达到10万台,六轴及以上工业机器人年产量达到5万台以上。  技术水平显著提升。工业机器人速度、载荷、精度、自重比等主要技术指标达到国外同类产品水平  集成应用取得显著成效。完成30个以上典型领域机器人综合应用解决方案,并形成相应的标准和规范,实现机器人在重点行业的规模化应用,机器人密度达到150以上。  2016.05  政策:《“互联网+”人 工智能三年行动实施方案》  发布机关:国家发展改革委、科技部、工业和信息化部、中央网信办  要点:明确提出到 2018 年国内要形成千亿元级的人工智能市场应用规模。规划确定了在六个具体方面支持人工智能的发展,包括资金、系统标准化、知识产权保护、人力资源发展、国际合作和实施安排。规划确立了在 2018 年前建立基础设施、创新平台、工业系统、创新服务系统和 AI 基础工业标准化这一目标。  2016.07  政策:《“十三五”国家科技创新规划》  发布机关:国务院  要点:要大力发展泛在融合、绿色宽带、安全智能的新一代信息技术,研发新一代互联网技术,保障网络空间安全,促进信息技术向各行业广泛渗透与深度融合。同时,研发新一代互联网技术以及发展自然人机交互技术成首要目标。  2016.09  政策:《国家发展改革 委办公厅关于请组织申报“互联网 +”领域创新能力建设专项的通知》  发布机关:发改委  要点:人工智能的发展应用问题,为构 建“互联网+”领域创新网络,促进人工智能技术的发展,应将人工智能技术纳入专项建设内容。  2016.11  政策:“十三五”国家战略性新兴产业发展规划  发布机关:国务院  要点:发展人工智能。培育人工智能产业生态,促进人工智能在经济社会重点领域推广应用,打造国际领先的技术体系。  2017.03政府工作报告中提到,要加快培育壮大新兴产业。全面实施战略性新兴产业发展规划,加快人工智能等技术研发和转化,做大做强产业集群。  2017.07  政策:《新一代人工智能发展规划》  发布机关:国务院  要点:明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到 世界领先水平,成为世界主要人工智能创新中心。  2017.10  政策:十九大报告  要点:将推动互联网、大数据、人工智能和实体经济深度融合。  2017.12  政策:《促进新一代人工智能产业发展三年行动计划(2018-2020年)》  发布机关:工信部  要点:它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。  2018.01  政策:《人工智能标准化白皮书(2018版)》  发布机关:2018人工智能标准化论坛  要点:国家标准化管理委员会宣布成立国家人工智能标准化总体组、专家咨询组,负责全面统筹规划和协调管理我国人工智能标准化工作,并对《促进新一代人工智能产业发展三年行动计划(2018-2020年)》及《人工智能标准化助力产业发展》进行解读,全面推进人工智能标准化工作。  2018.03  政策:2018年国务院政府工作报告  发布机关:国务院  要点:“人工智能”继2017年政府工作报告中首次出现后,今年再度被列入政府工作报告正文。政府工作报告强调了“产业级的人工智能应用”。做大做强新兴产业集群,实施大数据发展行动,加强新一代人工智能研发应用,在医疗、养老、教育、文化、体育等多领域推进“互联网+”。发展智能产业,拓展智能生活。运用新技术、新业态、新模式,大力改造提升传统产业。”  2018.04  政策:《高等学校人工智能创新行动计划》  发布机关:教育部  要点:从“优化高校人工智能科技创新体系”“完善人工智能领域人才培养体系”和“推动高校人工智能领域科技成果转化与示范应用”三个方面提出18条重点任务,着力推动高校人工智能创新。  2018.11  政策:《新一代人工智能产业创新重点任务揭榜工作方案》  发布机关:工信部  要点:征集并遴选一批掌握人工智能核心关键技术、创新能力强、发展潜力大的企业、科研机构等,调动产学研用各方积极性。  2019.03  政策:《2019年政府工作报告》  发布机关:国务院  要点:促进新兴产业加快发展。深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。加快在各行业各领域推进“互联网+”。  2019.03  政策:《关于促进人工智能和实体经济深度融合的指导意见》  发布机关:中央深改委  要点:提出促进人工智能和实体经济深度融合,坚持以市场需求为导向,以产业应用为目标,深化改革创新,优化制度环境,激发企业创新活力和内生动力,结合不同行业、不同区域特点,探索创新成果应用转化的路径和方法,构建数据驱动、人机协同、跨界融合、共创分享的智能经济形态。  2019.06  政策:《新一代人工智能治理原则》  发布机关:科技部

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。