装有芯片的摄像头到底有多智能?

   一片小小的人工智能视觉芯片能做什么?无人驾驶汽车主动识别并避让行人、摄像头实时甄别在逃犯……这些影视作品中的情节,或许不久将可通过基于嵌入式人工智能视觉芯片的“解决方案”成为现实。

  人工智能芯片被视为未来人工智能时代的战略制高点。在视觉感知领域,人工智能视觉芯片正逐步应用于智能手机、安防监控、自动驾驶、医疗成像和智能制造等领域。

  可根据AI需求成像

  纵观信息产业发展历程,从个人电脑时代到移动互联网时代,承载高性能计算的芯片决定新型计算平台的基础架构和发展生态,并掌握着产业链最核心的话语权。

  中国科学院院士张钹指出,传统硬件架构难以满足人工智能时代深度学习的要求,新的算法需要新的硬件来支撑。同时,芯片的结构将越来越像“大脑”,类脑芯片、智能芯片等将是人工智能的发展方向。

  “所谓视觉芯片,实际上是一种具有高速图像采集和实时图像处理功能的片上集成系统芯片。”中国科学院半导体研究所半导体超晶格国家重点实验室研究员吴南健介绍说,在日前举办的国家自然科学基金优秀成果北京对接会上,吴南健带领研究团队展示的新型视觉芯片(VisionChip)科研成果很是引人注目。

  据介绍,这种视觉芯片集成高速图像传感器和大规模并行图像处理电路,能够模仿人类视觉系统视觉信息并行处理机制,解决现有视觉图像系统中数据串行传输和串行处理的速度限制瓶颈问题。

  吴南健解释说,人工视觉的架构分两部分,类似于人的眼睛和大脑。人的眼睛是一个典型的图像传感器,能够摄取图像并且进行一些噪音去除等初级图像处理;人的大脑神经元网络是一个视觉图像处理系统,具有非常强的对所摄取的视觉信息进行并行处理的能力。

  AI视觉芯片与摄像头的关系是——芯片做的是大脑,摄像头做的是眼睛。这里就存在一个问题:大脑该如何控制眼睛?远望智库人工智能事业部部长、图灵机器人首席战略官谭茗洲解释道,传统的技术方法是定义一个通信控制接口,但在视觉应用中这种做法会非常复杂。人眼的成像是非常聚焦的,只看到关注的东西。当AI算法解决了“要看什么”的问题后,前端成像就有了目标,可以把所有的资源都调配到关注的对象上,做到“指哪打哪”,也就是取出噪音的处理过程,可以更高效智能地处理视觉信息。这种根据AI的需求来成像,能解决很多以前解决不了的问题。

  “通常以前处理的方式,是通过摄像头把信息摄录,传到服务器或云端后,利用服务器上的显卡进行运算,现在是将视觉芯片嵌入摄像头,让其本身可以处理信息,做成专用芯片,如果芯片大批量生产,在价格上会便宜非常多,极大降低成本。这就是目前这项技术突破的核心价值。”谭茗洲在接受科技日报记者采访时指出。

  比人类视觉更具优势

  在我们通常的印象中,一个视力正常的人可以迅速且毫不费力地感知世界,甚至可以详细生动地感知整个视觉场景;但其实这只是一个错觉。

  “人类生理视觉有着天然的局限,只有投射到眼球中心视觉场景的中间部分,我们才能看清楚。比起人眼来,嵌入视觉芯片的机器将具备相当多的优势,因为可以传感更宽的频谱范围、更高的清晰度、更宽的视角,其视力远不止5.0,在夜间也可以看得很清楚。如同AlphaGo战胜‘围棋天才’一样,在某些应用场景,其视觉在准确性、客观性、稳定性等方面都要比人类视觉更具优势。”谭茗洲指出。

  吴南健介绍说,目前,国内外在人工视觉芯片领域的研究主要是CMOS图像传感器芯片技术、并行图像处理技术和CMOS集成技术。在CMOS图像传感器领域,国际技术水平朝着高分辨率、宽动态范围、高帧率、高智能化、宽波长范围和三维成像的方向发展。人工视觉系统芯片能够完成图像获取和初级(图像滤波)、中级(特征提取)、高级(特征识别和不规则处理)3个图像处理步骤。

  “视觉芯片关键要解决运行效率和处理3D影像这两个问题。以往视觉芯片处理信号面临的最大问题是因运算量太大导致处理信息速度低,以及摄取的照片是把三维世界‘压缩’成二维影像,在一张平面上已分不清物体距离远近、立体空间形状、空间位置等,而人眼可把这个还原。”谭茗洲表示。

  记者了解到,新型人工智能视觉系统芯片,是将高速CMOS图像传感器、并行信号处理单元和输出电路集成于单一芯片内,实现实时视觉芯片系统。将不同功能的技术集成在一个芯片上有很多优势,实现图像获取和图像信息处理每秒一千帧的系统速度,可广泛应用于高速图像处理、快速图像识别解释、高速运动目标的实时追踪等领域。

  谭茗洲指出:“目前,中科院设计的新型视觉系统芯片理念非常先进,仿照人类视网膜神经元机制设计,感光对信号的处理方式,拣取有用的信号进行处理,极大地减少了运算的体量。”

  未来市场空间巨大

  “以我个人的观点,视觉系统芯片会成为必然的趋势,就像手机和相机结合成就智能手机一样,目前在技术上已突破填充率低、分辨率低和信号干扰严重的难题,将科研成果转化并投放市场只不过是时间问题。”吴南健表示。

  记者了解到,目前基于该技术的产成品已经试用于一些创新企业,比如在工业产品的自动化检测领域完全可以使用视觉系统芯片代替人工检测;在智能监控领域,过去需要将视觉处理芯片装在具有传感器技术的摄像头上,通过把数据结构化、再压缩送到数据中心的复杂方式完成数据传输和计算。

  那么,视觉系统芯片如果在未来实现产业化,其市场空间有多大?据推算,2018年,图像传感器的市场规模在150亿美元左右,虽然其中120亿美元发生在智能手机领域,但未来发展比较快的4个领域是安防、国防、汽车、医疗,到2021年将会迎来40亿美元的市场空间,年增长率约10%—20%。

  “视觉处理器的需求增长会更快,目前该市场的整体规模(包括硬件、软件、服务)在170亿美元至180亿美元,单从硬件来看也占到约30亿美元。如果视觉系统芯片可以覆盖70亿美元的市场规模,企业在这中间拿到1%的话,其盈利空间就已经很大了。”吴南健指出。

  近年来,国内外一批新型人工智能企业,依托人工智能领域技术和算法优势向芯片行业渗透,加强人工智能芯片基础层研发。从市场格局来看,已经发展成为一个相对独立又相互依存的产业生态。在前端,索尼是图像传感器市场、生产和技术的领导者,紧随其后的三星和豪威科技也保持着不错的竞争力;在后端,Mobileye和英伟达(NVIDIA)是提供视觉处理芯片的主要厂商,在国内该领域的公司有地平线等。

  然而,截至目前,尚未有企业实现“图像传感器+视觉处理器”集成式芯片的大规模量产。不管是现在的创业企业,还是已经在市场上占有一定份额的大企业,不是做图像传感器,就是做后端的视觉处理器。正如吴南健所言,这将给初创企业带来机会。 

推荐文章

数据集是人工智能(AI)的生命线 - 可以说,它们使模型成为可能。但是,没有相应注释的数据取决于正在运行的算法的类型(即,监督与无监督),或多或少是无用的。这就是为什么像Scale这样的样品标签创业公司筹集了数千万美元,并吸引了优步和通用汽车等客户。这就是为什么Kevin Guo和Dmitriy Karpman共同创办了Hive,这是一家使用由数十万志愿者提供的注释数据来培训特定领域AI模型的创业公司。拥有近100名员工的Hive在从PayPal创始人Peter Thiel的创始人基金和其他人那里筹集了超过3000万美元的风险投资之前不久推出了旗舰产品--Hive Data,Hive Predict和Hive Enterprise。“我们建立了[Hive],因为我们觉得虽然围绕人工智能和深度学习有很多兴奋,但我们没有看到很多实际的应用程序正在构建,”郭在电话采访中告诉VentureBeat。“有很多炒作,但他们真正要解决的问题似乎并不明显。大多数这些都是有些工作的演示,但并不是真正的企业级。“为此,Hive通过Hive Work招募了大部分人类数据贴标人,Hive Work是一个智能手机应用程序和网站,指示他们完成分类图像和转录音频等任务。作为交换,Hive发放了一小笔奖励 - 每周数万美元。(郭说它可以使用“激增定价”来确保在必要时更快的周转时间,例如当Hive客户有特定项目时。)该战略取得了成功。Hive在其贡献者社区中的30多个国家/地区拥有近700,000名用户,他们每天帮助处理大约一千万个标签,准确率达到99%。(这种准确性部分归因于一个淘汰系统,它每隔一段时间就会进入“已知”任务,确保用户不会对系统进行游戏。)客户通过提供数据标签服务的Hive Data挖掘员工队伍。针对多个垂直行业量身定制。“获取培训数据来构建这些模型实际上非常非常重要。从某种意义上说,自动化的唯一方法就是招募大量的人力,这几乎具有讽刺意味,“郭说。“你可以拥有最好的框架,但如果没有良好的训练数据,你将无法获得良好的输出。我把它比作一个人类的头脑:你可以拥有最聪明的大脑,但如果你不教这个大脑猫狗之间的区别并展示它的好例子,它就永远不会认识到猫与狗之间的区别。“Hive Work的输出还提供Hive Predict,为企业提供定制设计的计算机视觉模型,帮助企业实现业务流程自动化; Hive Enterprise,针对汽车,零售,安全和媒体等领域,提供从头开始构建的专有数据的定制深度学习模型。Hive使用基于Google开源TensorFlow框架的后端,通过API或云开发AI系统,或与集成合作伙伴合作设计内部部署解决方案。到目前为止,凭借其内部服务器和网络基础设施,Hive创建了机器学习模型,可识别活动,预测年龄和性别,对汽车进行分类,确定相机传感器与感兴趣主体之间的距离,甚至可以检测爆炸等事件,电视节目中的枪声,战斗和广告。郭拒绝透露Hive的任何客户的名字,但表示每个客户每个月都会发出数千万的API请求。Hive的模型之一 - 徽标模型API - 当然会检测徽标,但也会检测它们显示的产品或广告以及它们可见的持续时间。Hive声称,与Google Vision Cloud的5%召回率和66%的精确度相比,它具有99%的召回率和98精度。Hive每周增加100个徽标,目标是在2018年第四季度达到10,000。“我们的质量标准远远高于其他所有人,”郭说。“我不希望[Hive]成为另一个真正过度的人工智能公司,它实际上无法构建技术,我认为这对整个空间来说并不好。”

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。