数据标注师:人工智能时代的新热门岗位

近年来,伴随着人工智能行业的不断发展,人们已经可以清楚感受到未来智能化、数字化时代来临的脚步。在新时代之下,未来的职业分类也必将迎来新的变化,而数据标注师成为了第一个数字时代的热门行业。

  

  在数字时代,尽管一些旧的行业会被逐渐淘汰,但是必然会有大量的新行业诞生,一方面,数字技术辅助工作者简化办公流程和提升办公效率,可视化办公软件广泛应用等简化对于工作者记忆力、运算能力甚至学习底层程序的要求。另一方面,数字技术辅助工作中的分工合作,工作内容被分解成众多工作任务,工作者通过网络设备可以与其他工作者快速对接,将工作任务聚合共同完全一项工作,这有助于具有单一或者少量专业化技能工作者顺利完成工作。

  以数据标注师为例,在数字技术的加持之下,数据标注师们对于工作的硬性条件要求被压缩到了最小,只要通过一台电脑与一根网线便能够完成工作内容。

  由于人工智能快速发展,数字标注已经成为一份热门的工作。在进行机器学习中的有监督学习或半监督学习时,通常需要对训练集数据进行标注,辅助计算机理解数据。这也使得对于数据标注工作者需求日益增加,数据显示,目前,全国数据标注师的从业人数已经超过了2000万。

  数据标注工作覆盖面较广,既有简单易学的岗位,只需对图片、文本、语音等数据完成分类、框选、标记即可,本次收集的数据中98.5%的兼职岗位不要求学历限制;也包括需要专业技能岗位,如医学标注、语料标注等。数据标注也可以满足不同就业需求,既可以作为短期过渡岗位,快速上手,同样可以作为长期职业规划,也可以凭借积累经验,实现数据标注师-数据标注师组长-业务助理-业务主管的职业规划。

  

  在行业快速发展的时候,如何保证行业一直处于正确的发展路径,避免“内卷化”的出现是目前数据标注行业最需要注意的内容。这一问题的唯一解便是人才的培养。纵观目前市场,对于专业数据标注师的人才需求在大量增加,但是在人才培养方面却仍待发力。AI优评作为数据标注行业人才标准体系的建立者,不仅联合国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,为行业人才评价提供一个可靠的标准,更同B端企业实现了对接,直接对优秀的人才提供就业机会,保障优秀人才的输出,为行业发展做出自己的努力。



推荐文章

        来自巴西阿雷格里港大学的学者发表于ECCV2018的论文《License Plate Detection and Recognition in Unconstrained Scenarios》,给出了一整套完整的车牌识别系统设计,着眼于解决在非限定场景有挑战的车牌识别应用,其性能优于目前主流的商业系统,代码已经开源,非常值得参考。作者信息:展示了该系统在室外环境,角度变换等场景强大的车牌定位、识别能力。 很多车牌识别论文中常用的数据库往往是正面拍摄的,但实际应用中,各种可能的情况都有,作者首先给出了一些对车牌识别有挑战的数据示例:该文提出的系统很好的解决了这类有挑战的车牌识别问题。系统架构作者提出的车牌识别系统,包含车牌识别的所有环节,主要有三大步骤:车辆检测、车牌检测与校正、OCR。下图展示了整个系统流程:输入图像首先使用YOLOv2进行车辆检测(作者使用原始的YOLOv2,没有做任何改动),检测到的车辆图像再输入到WPOD-NET网络,进行车牌检测和车票卷曲校正系统的回归,然后对车牌进行校正输入到OCR-Net网络,识别出车牌字符。WPOD-NET用于车牌区域检测于校正系统回归示意图:平面目标的全卷积网络检测,对于系统输出的车牌区域特征图,划分成(m,n)个cell,查找高目标概率的cell,根据这些cell的位置,计算将该区域转换成方形车牌的仿射系数。WPOD-NET架构图为训练WPOD-NET对数据进行了各种常规的数据增广:车牌识别OCR部分使用一种改进的YOLO网络,其架构如下为训练该OCR系统也进行了大量数据增广:为评估该系统,作者收集了常用的数据集,并自建了挑战的数据集CD-HARD。实验结果作者将该文系统与目前主流的商业车牌识别系统相比较,包括OpenALPR、Sighthound、Amazon Rekognition。在整个数据集上取得了远超过其他系统的性能,在OpenALPR数据集上取得了与最好系统相匹敌的性能,尤其在具有挑战的CD-HARD数据集上取得了异常明显的性能优势。一些校正并识别后的车牌示例:运行速度在配置为Intel Xeon CPU 、12Gb RAM、 NVIDIA Titan X GPU的机器上,平均达到5fps。工程主页:http://www.inf.ufrgs.br/~crjung/alpr-datasets/https://github.com/sergiomsilva/alpr-unconstrained转载来源:《ECCV18|这篇论文开源的车牌识别系统打败了目前最先进的商业软件》

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。