人工智能未来的数据标注将会是自我标注

2017 年 7 月,最后一届 ImageNet 挑战赛落幕。 为何对计算机视觉领域有着重要贡献的 ImageNet 挑战赛,会在 8 年后宣告终结? 毕竟计算机系统在图像识别等任务上的准确率已经超过人类水平,每年一次突破性进展的时代也已经过去。 近日,FAIR(Facebook AI Research) 的 Ross Girshick 、何恺明等大神联手,在 ImageNet-1k 图像分类数

龙猫数据携手400万用户升级数据服务,AI企业成最大受益者

AI自诞生之日起就给了我们无限的想象力,成为了社会普遍关注的话题。“人工智能将会快速爆发,10后50%的人类工作将被AI取代。”创新工场董事长李开复曾介绍到。对于AI创业者而言,巨头们搭建的AI生态日渐完善,存储和计算成本大幅下降,AI初创企业的难度也正在逐渐降低。据资料显示,过去两年新增加人工智能企业数超过了过去10年的总和。深度学习带动更多行业应用深度学习是一个划时代的技术,强大学习能力逼近任

大数据标注开启助残新模式 每年可助300名残疾人就业

当记者走进宁夏回族自治区残疾人网络就业培训基地,30多名残疾人正在导师的辅导下学习产品数据标注。据基地工作人员介绍,残疾人学员正在参加的培训是由京东事业部推出的“京东微工”数据标注项目。  “所谓‘数据标注’,通俗地说,就是‘人脑训练电脑’。”京东集团标注平台机构负责人刘雅告诉记者,由于数据标注具有简易操作、轻劳动力的特点,十分适合残障人士。参加数据标注的残障人士每天只需工作8小时,便可轻松获得1

爱数智慧—人工智能数据服务商中的一匹黑马

大数据给人的印象貌似虚无缥缈,如今实则高频率的存在于每个人的身边。简单的说从你拿起手机订餐,到购买任何生活起居用品的时候已经形成了数据。当数据量足够大的时候,便为人工智能提供了可以进行从任何角度分析得出任何结论的基础库。这是一个“细思极恐”的事情。牛津大学的一项研究甚至显示,未来二十年将会有 47%的工作被机器人取代。这个叫做 Mighty AI 的公司,希望用众包平台的方式,帮助科技公司解决人工

我们是人工智能背后的人工

人工智能的发展如火如荼。其背后必不可少的要素之一便是供机器学习的大数据采集工作,如今依然出自人工之手。在中国西部异军突起的贵州省的深山之中,就有一群大数据采集者,他们是“人工智能背后的人工”。沿着贵阳市区刚修好的公路驾车50多公里,就到了百鸟河数字小镇。小镇上一个容纳400多人的数据工场,电脑前坐满了来自附近一家扶贫高职的学生,他们来自各个专业,来这里主要进行数据标注的实习。把人工智能需要识别的数

互联网数据标注员是做什么的?有什么发展前途吗?

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业

推荐文章

数据标注产业的发展,促进了人工智能的蓬勃兴起,其主要的应用行业和不同行业的标注场景总结如下:(1) 自动驾驶:利用标注数据来训练自动驾驶模型,使其能够感知周围的环境并在很少或没有人为输入的情况下移动。自动驾驶中的数据标注涉及行人识别、车辆识别、红绿灯识别、道路识别等内容,可以为相关企业提供精确的训练数据,为智能交通保驾护航。(2) 智能安防:数据标注扩大了现有安防系统的感知范围,通过融合各种来源的数据并进行协同分析,提高监控和报警的准确性;其对应的标注场景有面部识别、人脸探测、视觉搜索、人脸关键信息点提取以及车牌识别等。(3) 智慧医疗:人工智能和大数据分析技术应用于医疗行业,可以深入洞察医学知识和数据,帮助医生和患者解决在医学影像、新药研发、肿瘤与基因、健康管理等领域所面临的影像识别困难、药物研发成本巨大、癌症治疗效果不佳等难题。(4) 工业4.0:利用标注数据训练和验证机器人应用程序的计算机视觉模型,从而使模型对工业环境内的各类障碍物、机械设备和机器人有更加精确的感知, 实现工业智能机器与所处环境中人和物的安全交互。(5) 新零售:将人工智能和机器学习应用于新零售行业,可以通过商品销售数据以及用户的真实反馈促进电子商务的销售,提高用户的个性化体验以及预测客户需求,并实现线上货物推荐的精准化。新零售中涉及的标注场景包括超市货架识别、无人超市系统和电子商务智能搜索与推荐等。(6) 智慧农业:依托精准的数据标注实现对农作物的定位以及对其成熟度和生长状态的识别, 实现农作物智能采摘并解决精准农药撒播问题,从而减少人力消耗并提高农药利用率。目前,智慧农业中有关数据标注的场景有栽培管理、精准水肥和安全监测等。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。