创新工厂李开复:AI+”有四个阶段

编者按:这是创新工场董事长李开复在2019上海世界人工智能大会上的主论坛演讲。   此前对于AI开启的行业赋能,已经被很多次阐释、验证并不断产出成果。   但对于“AI+”的发展路径、逻辑和未来,在李开复之前还没有人有过如此大道至简式的分析。   或许跟李开复的履历和现在密不可分。他是80年代的计算机博士,论文成果就是AI领域的研究,是懂AI的科学家。   

介绍下数据标注平台的运营模式

    目前AI行业发展火热各大巨头都投入巨资在此领域布局,智能驾驶、人脸识别以及近段时间正火的AI养猪都是AI技术应用在实际生活上的体现,毫不夸张的说AI技术正在逐渐改变我们的生活而我们的生活也将因此变得更美好。     AI的发展离不开数据标注的支持,而目前AI行业庞大的数据标注工作都 是通过 哪种模式完成的呢?&

数据清洗在人工智能基础数据方面的重要性。

数据清洗、数据采集、数据标注——人工智能时代不可或缺的产物随着信息处理技术的不断发展,各行各业已建立了很多计算机信息系统,累积了大量的数据。为了使数据能够有效地支持组织的日常运作和决策,这就要求数据可靠无误,能够准确地反映现实世界的状况。数据是构成信息的前提和基础,好的数据质量是各种数据分析如OLAP、数据挖掘等有效应用的基本条件。人们常常抱怨“数据丰富,信息贫乏”,究其原因,一是缺乏有效的数据分

何为数据标注数据清洗?

        数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。        数据清洗的主要包括:纠正错误、删除重复项、统一规格、修正逻辑、转换构造、数据压

揭秘AI训练内幕:帮助AI进化的除了专家,还有全球无数上班族

注:原文来自“腾讯科技”,本文转载来自36氪。    大型科技公司对注释数据的工作往往保持沉默,因为他们面临着隐私维权人士对他们存储并与外部企业共享大量个人数据的担忧加剧划重点在AI系统能够学习之前,必须有人标记提供给它的数据,这项工作对自动驾驶汽车、监控系统和自动化医疗等AI的创造至关重要。大型科技公司对注释数据的工作往往保持沉默,因为他们面临着隐私维权人

AI 如何从令人失望到大行其道?

人工智能(AI)问世之初曾经狂妄自大、令人失望,它如何突然变成当今最热门的技术领域?人工智能(AI)问世之初曾经狂妄自大、令人失望,它如何突然变成当今最热门的技术领域?这个词语首次出现在1956年的一份研究计划书中。该计划书写道:“只要精心挑选一群科学家,让他们一起研究一个夏天,就可以取得重大进展,使机器能够解决目前只有人类才能解决的那些问题。”至少可以说,这种看法过于乐观。尽管偶有进步,但AI在

工作带娃两不误 阿里“AI豆计划”正利用人工智能为贫困女性创造大量在家乡就业的机会

个多月前,21岁的贵州女孩小吴完全没有想到,自己能够在家门口找到一份心仪的且听上去有点儿“高大上”的工作。7月18日,由支付宝公益基金会、阿里巴巴人工智能实验室、中国妇女发展基金会联合发起的“AI豆(谐音‘爱豆’)计划”在贵州铜仁启动试点:通过人工智能产业释放出大量就业机会,探索“AI扶贫”新模式,让贫困群众尤其是困境女性成为“人工智能培育师”,在家门口实现就业、脱贫。经过半个多月的教学和练习,小

麻省理工的 AI 新研究:AI可以织毛衣了!

说到人工智能,除了某些很酷的前沿应用外,其实对于这个话题我们经常会想到「假」这件事,用人工智能完成的造假除了一些灰产之外,更成为了一种娱乐方式,其中最有名的可能就是 AI 换脸的了,这种换头术至今还在 B 站大肆流行着。相反的,AI 应用在现实中带来的「真」变化可谓少之又少。不过最近美国麻省理工学院的研究人员发现了一种与「造假」相反的 AI 研究,这种研究反而需要 AI 来点「真」的东西,准确的说

AI换脸竟能做天天衣无缝,黑科技太可怕了!

说起“改头换面”,恐怕大家都觉得这不是一朝一夕的事儿。然而就在最近,网友们惊讶的发现,这件事竟能眨眼间搞定了!94版《射雕》里黄蓉的扮演者突然从朱茵变成了杨幂,服化道画风丝毫都没有变化……就连表情神态也惟妙惟肖,毫无违和感。拔群的效果果然引来一众吃瓜群众围观,热搜话题阅读量超过了1.3亿。这种被称作黑科技的AI换脸,国内也有不少仿效者,比如有网友把女主播的脸换成唐嫣、杨幂、刘亦菲等明星,真是吓傻了

企业数据治理的成功要素之一:数据战略管理

前言:作为一名数据服务工作者---资深“乙方”,见过、听过或亲身经历过很多的数据治理相关的项目,如:数据交换共享项目、数据治理项目、主数据项目、元数据项目……,这些项目中,有非常成功的——用的很好,也有差强人意的——勉强在用,还有没上线就下线的——基本没有使用。如果我们Review下这些项目,也许我们不难发现影响数据治理项目成功或失败的因素有很多,这些因素有管理方面的、业务方面的、技术方面的、企业

注册找标注网送爱奇艺会员

                免费注册找标注网送爱奇艺会员感谢大家一年以来的支持与关注,免费注册找标注网送爱奇艺会员活动开始了,小伙伴们想要的看下规则!规则如下:新老用户都可,需要已实名用户并绑定有效手机号,手机号与支付宝手机号一致;邀请6人成功注册,其中3人实名成功;只限爱奇艺新用户;爱奇艺注册手机号与找标注网注册

数据标注----人工智能行业的基石

“ 随着一系列技术上的突破,人工智能在世界科技领域已经渐渐的驶进了高速车道。中国老子有一句名言是:“九层之台,起于累土”。意思就是再高的楼台都是由一筐一筐土堆积而成的,这就特别的强调了基础的重要性.....”目前越来越多的人都有一个共识那就是:互联网与人工智能在当今世界科技格局中,中国和美国是两国独大。同时,这两个领域又是未来领域。为什么说是未来领域,互联网的未来趋势已经被时间很好的证明

未来计算机视觉技术发展的趋势

“随着自动驾驶汽车,机器人,无人机,人脸语音视频识别,智慧物流,新零售应用等方面取得了令人瞩目的进步,计算机视觉(CV)成为主流词。对于已经在该领域有一定了解的人来说,发现越来越多的人注意到这个正在改变一切的技术......”未来几年CV将会在以下九个方面占主导地位。CV应用程序越来越广泛。未来几年CV程序将普遍应用于手机,安全摄像头,虚拟镜等设备上,这对于数据隐私(消费者越来越敏感的一个问题)来

数据标注到底是一个什么样的行业

        任何一家为人工智能企业提供数据标注服务的公司都离不开“数据标注员”这样的角色。毕竟人类的认知一直领先于机器智慧一段距离,目前的AI还无法胜任数据标注员的工作,机器学习依赖人类“喂食”,而填饱机器的“美味佳肴”则需要标注员们对数据的加工....     &

数据标注公司如何在人工智能大发展浪潮中迎来大发展

“从深度学习到AI产品的广泛应用,我们正在走入新一轮的效率革命。那么问题来了,我们应该如何在波涛汹涌的AI浪潮中站在数据标注行业的前沿,而不是被大浪所吞噬而衰退呢?” 我们就具体如何做进行几点浅谈。准确判断数据标注需求公司的的需求方向市场需求在现实中是瞬息万变的,有在研发层面需要快速进行产品迭代的AI公司;有在应用层面需要大批量数据进行机器学习的AI公司。我们能够准确的把握此类公司的需求

开源OCR文字识别软件Calamari

Calamari是一种新的开源OCR识别软件,它使用了最先进的Tensorflow实现的深度神经网络(DNN)。 提供了预训练模型和多模型投票技术。由卷积神经网络(CNNS)和长短时记忆(LSTM)层构成的可定制网络架构通过Graves等人的连接时间分类(CTC)算法进行训练。而GPU的使用大大减少了训练和预测的计算时间。我们使用两个不同的数据集来比较Calamari与OCRopy,OCRopus

开源的车牌识别系统打败了目前最先进的商业软件

        来自巴西阿雷格里港大学的学者发表于ECCV2018的论文《License Plate Detection and Recognition in Unconstrained Scenarios》,给出了一整套完整的车牌识别系统设计,着眼于解决在非限定场景有挑战的车牌识别应用,其性能优于目前主流的商业系统,

Intel论文揭示自家车牌识别算法:LPRNet

来自工业界的最佳实践。车牌识别是一个老生常谈的话题,在工业界已经得到广泛应用。当深度学习在各种视觉识别任务上刷新更高精度的时候,却常常被认为计算量远大于传统方法。Intel公司俄罗斯IOTG计算机视觉组的工程师最近发布了一篇论文,揭示了自家已经商用的车牌识别算法,使用轻量级深度神经网络进行车牌识别,达到快准狠的新高度,即速度超快、精度超准、硬件利用率超狠。本文来自于论文《LPRNet: Licen

轻量级深度神经网络车牌识别,识别车牌只需要1.3毫秒,无需分割

本文提出了LPRNet – 自动车牌识别的端到端学习方法,没有预处理步骤的字符分割。我们的方法受深度神经网络最新突破的启发,并且可以实时工作,中文牌照识别精度高达95%:在硬件配置nVIDIA GeForce GTX 1080、英特尔酷睿i7-6700K情况下可以实现每1.3毫秒识别一个车牌。LPRNet由轻量级的卷积神经网络组成,因此可以以端到端的方式进行训练。据我们所知,LPRNet

快速精准的人头检测,代码已开源

    自江森自控(Johnson Controls Inc.)的软件工程师Aditya Vora分享了一种快速精准的人头检测(head detector)算法并开源了代码。    看起来还是不错的!人头检测在视频监控中非常重要,而公交车、商场或者大型场馆的拥挤人群计数则是其重要应用场景。 算法思想作者称拥挤

推荐文章

百度有一天在某硬件领域成为全球第一,这句话似乎听起来很离奇。如果说这个领域的直接对手,是亚马逊、谷歌、苹果等北美科技巨头,那几乎就更有点神乎其神了。 然而根据Canalys最新数据报告,在2019年Q2百度智能音箱出货量继续居于国内市场第一的前提下,已经超过谷歌攀升到了世界第二,前面只有亚马逊最早入场的智能音箱Echo,这个占尽天时地利的对手。  要知道,从小度在家发布至今,百度做音箱仅仅经历了一年半的时间。从初入江湖到中国第一世界第二用了如此短的时间,百度智能音箱产品的全球市场份额,比一年前增长了令人“惊恐”的3700%。只能用惨无人道来形容的增长曲线,似乎正在确立百度硬件领域的生存与发展空间。 而毫无疑问,小度音箱的出货量能否大于亚马逊是一个关键指标,甚至将成为智能音箱发展史的拐点。另一方面,我们知道华为手机在成为世界出货量第一的路上,受到美国以国家力量干扰,至今没有完成。百度能否在音箱之路换道超车,自然也会引发国人强烈关注。 那么“音箱第一大厂”到底能不能换人?答案其实是由三个问题决定的。   路线之问:市场到底想要什么音箱? 用户对小度产品未来的好奇,归根结底在于小度攀升速度过快,大家会奇怪这种急速拉升究竟是一个可保持的长期趋势,还是短时间刺激效应下的虚假繁荣? 换句话说,小度究竟是走在正确的路上,还是仅仅踩了个幸运蘑菇? 这个问题必须交给智能音箱短暂但急促的发展史去回答。亚马逊Echo与谷歌Nest系列之间的关系,颇有点像天猫精灵与小度。只是中国市场相对更复杂,还要加上小米以及众多已经告别历史舞台的音箱产品。  如果说中美两开花,不,是两条线有什么共同特点,就在于“技术流”蚕食“电商流”是个必然趋势。谷歌凭借Assistant不断升级的语音交互能力,以及与安卓生态的关系,在亚马逊已经牢牢占据的智能音箱江山里杀了出来,做到今天北美市场快要分庭抗礼的程度。而国内音箱“三巨头”,小度起步最晚,却通过小度助手背后强大的技术能力,不断分割小米和阿里的市场份额,拓展智能音箱的市场边界。 不难看出,智能音箱落脚市场的关键还是智能技术。声音识别、唤醒、语义理解、多轮对话等能力构成了这个硬件值得被使用的基础。技术体验不流畅,可能直接造成打开率下降,影响市场购买率。这个硬卡位的存在,让电商体系与IoT体系带来的赋能相形见绌。 这个逻辑的最新论据在于,谷歌今年没有拿出什么能够引发极客们热情高涨、用户付出真金白银的技术,而是更多在产品的系列化以及周边设计上下功夫。无论我们将其看作调整周期还是谷歌的技术创新疲软,最终结果就是谷歌挑战亚马逊的步伐减慢,在全球范围内被百度完成了销量反超。 而与小度硬核崛起所同步的,恰好是底层技术创新。在不久前发布并已经搭载到小度音箱产品中的小度助手5.0,唤醒能力上加入了流式截断的多层注意力模型(SMLTA);在语义理解算法层融合了百度NLP的知识增强语义表示模型ERNIE,小度助手的核心理解算法升级为超大数据预训练深度模型,让众多NLP任务都有了新的表现;此外,全双工免唤醒能力的加入,让小度助手5.0有了人类之间对话时的“拒绝反应”,能够一次唤醒多次交互,让音箱主动分辨何时“不说”。 另一个值得注意的技术-产品关键问题,来自于带屏音箱新品类的市场认可。根据Canalys数据报告,在Q2小度全球音箱出货量中,有45%是带屏音箱。可见用户对这一新产品品类已经有了深刻接受度。而Canalys也指出,百度在带屏音箱中近乎于是没有竞争对手的。这条产品路径,正在成为小度的独属红利。用户对于智能音箱体验的认可和需求,从来就没有降低过。换言之核心技术才是智能音箱的主要矛盾,从美国的谷歌生吃亚马逊,到中国的“千箱-三箱-小度超级箱”之路,都可以佐证市场核心逻辑的所在位置。 那么回到最初的答案,持续保持底层技术创新的百度,与长时间缺乏底层AI技术创新的亚马逊,处在一个努力奔跑,一个缓慢散步的进程里。百度反超,是存在战略上可能性的。 那么从战略到战术,关键问题在哪呢?   大妈之问:中国市场到底有多大? 通过底层技术创新,拉动技能开发生态和内容平台,这样的模式让国内智能音箱市场快速从三强争霸变成了一超两强。在小米和阿里近期无力概念技术和生态格局的条件下,这个局面今天来看应该会一直持续下去。 但是百度能否挑战世界第一的位置,很大程度上并不取决于国内竞争。因为现在中美音箱是你卖你的我卖我的,大家没事不串门。所以销量规模上的比拼,源自于各自市场容量的边界。换句话说,百度到底能把中国市场做到多大,是否能让中国市场音箱保有量超过美国,这个才是问题关键。 毫无疑问,中国市场上的智能音箱,正在享受互联网模式下的人口红利。根据Canalys预测,今年中国内地智能音箱数量将同比增长166%,效率冠绝全球,是美国46%增速的三倍。 这样的市场增速来源是多方面的,首先中国市场智能音箱的性价比依旧重要,这让智能音箱在中国市场基本属于无门槛消费。再者随着小度等音箱不断完善能力和内容,音箱的受众范围得到不断推广,家庭市场、教育市场在不断深化。  但真正决定中国市场销量边界的,其实是下沉市场的打开效率。几个月之前,我采访过烟台农村的一位大姐,她告诉我她家有一台小度在家,两台小度音箱(无屏版)。而这样的配置在她们村并不少见。可以直接对话,调出音乐、内容,以及应用的智能音箱,正在与中国广袤的黄土地毫不违和地沾粘在一起。 在理解智能音箱下沉市场的边界有多大时候,必须正视今天这样几个现状: 1、智能音箱抢占的是谁的市场?在具有长时间内容收听能力的市场里,不是一种音箱打败另一种音箱,而是这种智能交互模式+内容通道,收割收音机、低音炮、电视,甚至手机的存在时间。音箱体验的简便性,会从下沉市场首先发酵。 2、互联网服务增值模式与音箱之间的联系,构成了很多内容、电商、教育可以围绕音箱打开。这些内容在大都市可能很自然通过手机获取,音箱更多属于垂直人群,但在下沉市场,手机性能并不强,反而是便宜的音箱更可能成为入口。因此音箱的人均普及价值可以很快超越手机。 3、下沉市场的增长法则相对明确,大覆盖面广告效果明显。在春晚植入和热播综艺的普及下,如今用户已经对智能音箱产生心理预期和理解能力,市场教育周期已经基本完成。 在这三个条件下,智能音箱的市场边界还远远没有达到顶点。小度贯穿一线城市到乡村的销售覆盖网络,则强化了小度的市场打开通道。 如果继续保持目前的增长速度,小度基于中国市场的穿透力,销量超越亚马逊将不需要太长时间。无论国外媒体感觉多么不可思议,中国大妈说,这事是我们罩的。   苹果之问:去往海外的音箱如何生存? 再向更远处看,中美智能音箱的冠军,必然在世界范围内还有一战。但这场战斗发生在哪大有学问。 事实证明,美国音箱想在中国存活近乎不可能;看川普推特里的小情绪,中国音箱想进美国大概短期也不现实。 到2019年年底,全世界智能音箱预计可以达成2亿台的安装量,其中中国6000万,美国9000万。那么也就是说,全球还有四分之一非中非美市场。 根据Canalys的数据,这些市场份额里,目前对智能音箱接受度最好的是日本和韩国。在Q2这两个市场分别达成了131%和132%的增速,仅次于中国名列二三。 必须注意的是,这两大市场使用的语言既不是英语也不是汉语。所以从AI巨头输入产品解决方案时,这些市场需要的是多轮对话、语义理解、NLP的底层能力。 亚马逊和百度,谁能在这全球四分之一的市场里占领未来呢?这个远距离推测很可能给人不公允的感觉。但不妨来看一下,已经在中国卖了大半年的苹果智能音箱,是怎么失败的。事实上,苹果的HomePod基本可以判断为一款失败的产品,只不过是北美小败其他市场大败而已。4月,苹果不得已宣布HomePod永久降价50美元,可见其失利幅度之大。 苹果的音箱之痛,可以总结为三个问题:智能交互太差,尤其是非英语体验极其不好;昂贵的定价在其他智能音箱玩家面前没有任何竞争力,反而有浓厚的智商税嫌疑;应用体系,内容服务和IoT生态都没有,消费者不知道买来干什么。 苹果的问题,没有哪家企业敢不吸取。于是我们可以看到,音箱出海,脱离了本身市场的知名度和品牌能力之后,真正比拼的是三点:技术能力、定价能力、生态服务。 回到百度和亚马逊未来可能的出海对决中,今天底层技术的创新百度已经领先于业界,语音智能相关的底层算法幅度,更是从今年开始领先了AI老大哥谷歌,这是前所未见的。 而定价能力上,更靠近中国完善产业链的百度,显然不会拿出贵到离谱的产品走向世界。反而因为音箱品类的集成度有效,净值又不高,北美巨头很难在代工模式中发挥手机和平板的成本控制能力,很可能在直接与中国品牌的碰撞中陷入尴尬。 那么最后在生态服务能力上,百度与亚马逊如果真的展开较量,那就将是亚马逊依然强劲的世界电商网络能力,与百度代表的中国互联网服务模式的缠斗。这其中需要发挥中国互联网公司源源不断的运营和服务创新能力,可能要经历一场群狼搏虎的战斗。 虽然这个类比并不意味着真正的未来,但是2比1,是绝对能够说明某种态势的。而且出海之战,百度真正迎战谷歌或者亚马逊的时候,大概率小度已经是全球第一大音箱厂商了。 从无人机,到手机,再到音箱,世界第一并不只是个名号,还是中国科技产业不容放弃的话语权。当百度成为世界音箱一哥的同时,也是下个时代的大门被悄悄推开的时候。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。