通用监控场景标注规则

标注说明 标注范围说明:要进行标记的对象:站着、坐着、蹲着、躺着、抱小孩、背小孩、容器(购物车、婴儿车)中的小孩、走着的人、骑车人、推车和拉杆箱。当出现以下情形时,不需标注:1) 人体性别或年龄无法区分时不需标注;2) 头部或身体遮挡或截断超过50%及以上时不需标注;3) 推车、拉杆箱存在50%及以上遮挡时,不标注推车及拉杆箱;当行人无法标注时,其推车及拉杆箱也不进行标注。 示

通用语音数据标注规则

2、标注规范 ——共3项(文本、无效、性别)  注: 文本正确率:95%     其它(无效+性别)正确率:95% 注:一定不要多字、漏字!!2.1性别类别分类定义男性别女童声童声指小孩非常稚嫩的声音,大概是在5岁以下的范围。大孩子的声音归到男女。其他没有人声,或者男女混声的统一规为其他 

2019数据标注行业的发展速度更加令人惊叹!人工智能外包公司、人工智能企业部门、第三方数据标注与审核公司三分市场

 数据标注就是使用自动化的工具从互联网上抓取、收集数据包括文本、图片、语音等等,然后对抓取的数据进行整理与标注。数据标注与审核行业上游为计算机软硬件生产商及人力资源行业,下游主要是安放、自动驾驶等人工智能领域。数据标注与审核行业产业链示意图资料来源:智研咨询整理    智研发布的《2019-2025年中国数据标注与审核行业市场专项分析研究及投资前景预测报告》显示:近几

数据标注是什么?机器感知世界的起点

谷歌AI团队近日推出了一款新型图像标注方式——“流体标注”,即采用机器学习来注释分类标签并勾勒出图片中的每个对象和背景区域。谷歌官方表示其可将标记数据集的速度提高三倍。百度众测平台去年曾发布了5000万元的数据标注任务,而今年预计将达3亿元。面对如此大的市场需求,效率低、交付质量参差不齐的人工标注方式亟待改善。谷歌此次推出的“流体标注”如何为图像标注提速?数据标注——机器感知世界的起点“数据标注是

AI 和教育到底谁在变革谁?

教育行业内已经普遍认可“人工智能+教育”的重要性了,但当我们在大谈特谈 AI 如何重构教育时,它又会面临哪些真正的挑战?7月13日,新东方 AI 研究院院长瞿炜来到 2019 钛媒体 T-EDGE 科技生活节谈了谈他的看法。作为一家创立已经26年的老牌教育巨头,新东方积极拥抱新技术。在瞿炜看来,未来 AI 大势不可阻挡,“AI +教育”是新东方承担历史责任,必须要全力以赴。在 AI 浪潮席卷各个产

人工智能革命会倒逼少儿编程教育发展

教育的本质是为了培养未来的人才。人工智能社会即将到来,我们如何应对?7月13日上午,编程猫联合创始人、CEO李天驰来到2019 钛媒体 T-EDGE 科技生活节,他认为,未来30年是人工智能推动的社会,会带动新的人才的需求。人工智能切到教育的细分教育场景的要素是编程,这会倒逼编程教育作为学科教育的发展。经过四年的探索,李天驰发现,我们很早就谈计算机要从娃娃抓起,但效果并不尽如人意,核心就是缺乏合适

新闻工作将怎样被人工智能所改变?

曾经,机器人的出现改变了整个制造业经济领域。如今,人工智能和自动化以同样的方式颠覆着信息工作,人类开始逐渐将认知劳动交付给计算机。例如,在新闻业中,数据挖掘系统会提醒记者编辑们注意潜在的新闻选题,而新闻机构则为观众提供了获取信息的新方法。自动报道机制如今已可以覆盖财经、体育等品类的新闻。当这些智能技术渗透到各行各业中时,人们通常会好奇传统工种和劳动力将受到怎样的冲击。本期全媒派带来独家编译,看看在

女性劳动更容易被 AI 替代?

最近有很多研究提到,人工智能和自动化为主的技术进步,可能让女性就业受到比男性更大的冲击。不过更进一步查看的话,所有这些文章会将深层原因归结于,女性更少的从事科学、技术、工程和数学 (STEM) 方向的学习;说大白话,就是女性没有学会编程,不懂电脑技术。根据伦敦智库 IPPR 的研究,在自动化风险较高的行业中,近三分之二(64%)的英国工人是女性。这是因为众多女性从事的都是零售和行政工作,而这可以通

数据标注行业良莠不齐?淘金云助力AI企业加速发展

数据标注行业良莠不齐?淘金云.数据标注 助力AI企业加速发展什么是人工智能呢?当你进入无人超市自助结账,当你进入小区不需要刷卡而是刷脸,当你在外旅行用智能翻译软件时,你已经在享受人工智能的成果了。 但是你有没有想过,人工智能的飞速发展离不开大量数据的处理可少的。与应用,数据标注便是必不数据标注是人工智能产业的基础,是人工智能进行模型训练必不可少的一环。从某种程度上来说,没有经过标注的数据就是无用数

数据标注是人工智能的基础

如今,似乎每个公司都在用人工智能做事 - 或者如果他们不做,他们就会喜欢。该技术有望改善我们的工作和生活方式,从制造到零售,检查等各个行业都在努力构建自己的AI解决方案。但从哪里开始?我喜欢说AI就像烹饪一样 - 这些都是关于成分的。没有好的成分,即使最好的食谱也会变得平淡无味。AI也是如此,但在这种情况下,成分就是你的数据。如果组织不密切关注他们开发人工智能解决方案所需的数据并确保其有效准备和组

数据标注员成就了今天的人工智能

数据标注员成就了今天的人工智能,为什么说AI对人类劳动力来说是个好消息盖蒂盖蒂人工智能(AI)在未来的工作中扮演什么角色?从目前的趋势来看,它将使企业更智能,流程更高效,体验更个性化,客户更满意 - 尽管这并不能阻止那些有先见之明的Cassandras做出更可怕的预测。为了听取他们的讲话,一个新的大师类天才机器将逐渐但不可避免地从一个接一个的职业取代人类,直到我们大多数人闲置和贫困。我相信现实并不

数据标注员让中国在全球人工智能行业得到优势

为了保持人工智能的世界领先地位,中国依靠年轻的“数据标注员”,他们每天工作8小时处理大量数据,使计算机变得聪明。中国MINQUAN - 周俊凯的办公室坐落在东沙河的边缘,这是一个沉重的水体,将中国中部河南省的一个拥有318,000的小镇Minquan的新旧部分分开。正是在这里,19岁的周某今年夏天与他26岁的堂兄一起创办了他的小型数据贴标商店。编辑右边的周俊凯和他的表弟陈锐站在他们办君鹏科技公司办

Neurala为Brain Builder添加了视频注释工具,以加速AI数据准备释工具,以加速AI数据准备

波士顿 - Neurala公司今天推出了一款新的视频标注工具,该工具由Brain Builder平台的人工智能辅助。“自动视频注释将显着加速神经网络的数据标注,从而帮助组织更快地培训和部署AI,”该公司表示。标记图像和视频对于开发用于建模和训练AI应用程序的数据集至关重要。Neurala  以软件即服务(SaaS)为基础提供Brain Builder,以帮助简化深度学习的创建,

远在非洲的数据标注工厂也在为人工智能打工

远在非洲的数据标注工厂也在为人工智能打工他们也会服务中国的人工智能公司人工智能背后不为人知的贡献者——生活在肯尼亚贫民窟的一群人。在非盈利组织Samasource的帮助下,他们为硅谷大型科技公司的人工智能研究提供数据标注服务。我们一起来看看国外的数据标注到底是什么样的人工智能如人们预期工作时,硅谷企业总喜欢说一切“好似魔法”。但实则不然。魔法的背后是布兰达(Brenda),一位26岁的单身母亲。她

利用70万人的劳动力来标记数据和训练AI模型

数据集是人工智能(AI)的生命线 - 可以说,它们使模型成为可能。但是,没有相应注释的数据取决于正在运行的算法的类型(即,监督与无监督),或多或少是无用的。这就是为什么像Scale这样的样品标签创业公司筹集了数千万美元,并吸引了优步和通用汽车等客户。这就是为什么Kevin Guo和Dmitriy Karpman共同创办了Hive,这是一家使用由数十万志愿者提供的注释数据来培训特定领域AI模型的创业

数据标注「星尘数据」获数百万元天使轮投资

公司8月获得天使轮投资,由天使湾领投,英诺天使、老鹰基金和创势基金跟投。Tractica预测,2024年人工智能市场规模将增长至111亿美元。但AI要真正发挥作用,优质的数据必不可少,正如业界共识“大量数据+普通模型”比“普通数据+高级模型”的准确度更高。所以,前端的数据采集、加工环节单拎出来成为了新的机会点。其实,数据标注并不算一个完全新兴的产业。成立于1998年的“海天瑞声”已在语音领域耕耘近

广州财校成立“兆禾兴财务数据标注班”动员会

4月24日下午,广州市财经职业学校(以下简称“财校”)财务会计教学部在太和校区举行了成立“兆禾兴财务数据标注班”动员大会。出席此次动员大会的有广州市兆禾兴信息咨询有限公司单位负责人郭经理、陈主管,财务会计教学部余国艳主任、周燕飞老师,招生就业指导科袁志勇老师以及17级会计专业及会计电算化专业的学生,动员会由余国艳主任主持。首先,余主任向学生们介绍了本次到会的企业代表和参会老师;“兆禾兴财务数据标注

明略数据是谁?为何能拿下腾讯在行业AI的高额投资

明略数据,究竟是一家什么样的公司?昨天,这个低调的AI独角兽官宣了一轮已于去年完成的10亿元融资,C轮,华兴新经济基金和腾讯领投。更早之前,红杉资本中国基金是明略数据B轮的领投方。值得注意的是,这则简短融资消息背后,也隐含着巨头们对潮水方向的判断。Why?有两个人最适合回答该问题。一是腾讯投资董事总经理姚磊文(Levin Yao),他是腾讯投资在AI赛道上的“捕手”,也是腾讯投资明略的直接负责人。

谷歌发布迄今最大注释图像数据集,190万图像目标检测挑战赛启动

【新智元导读】今天,谷歌宣布开放Open Images V4数据集,包含190万张图片,共计600个类别,共标记了1540万个边界框,这是迄今的有对象位置注释的最大数据集。基于此数据集,谷歌将在ECCV 2018举办大型图像挑战赛。2016年,谷歌推出一个包含900万张图片的联合发布数据库:Open Images,其中标注了成千上万个对象类别。从它发布以来,谷歌的工程师一直在努力更新和重新整理数据

“数据标注”今天,那些人工智能背后“人工”正在回家

5到10年后,当人工智能全面普及,科技先驱和新一代商业巨子注定会被时代的聚光灯铭记。但今天,「甲子光年」却想说一个关于人工智能“从未被讲出”的故事,写一群时代大幕后的“隐形者”——标数据的人。智能时代滚滚巨轮之下,一批批用于“人脸识别”、“自动驾驶”、“自然语言处理”的标注好的数据,正是出自这些学历不高,每天对着电脑工作8到10小时的人手中——他们是“人工智能背后的人工”。「甲子光年」采访了多个数

推荐文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。