关于我们


点我logo.png

郑州点我科技有限公司成立于2014年10月,是一家全球人工智能大数据解决方案提供商!

我们立足中原,服务全球,专注于人工智能领域,为人工智能行业提供数据采集,数据清洗,数据标注,等数据类服务;

同时围绕人工智能提供技术支持,工具开发等服务。

数据采集业务有:图像采集,语音采集,道路采集,文本采集,视频采集等;

数据标注业务有:图片标注,语音标注,文本标注,视频标注,道路标注,行人标注,人脸106点,图像语义分割;

数据标注工具开发定制:矩形框,多边形,圆形,椭圆,折线,点,扣图,OCR,3D框,3D点云等全系列标注工具;

行业应用领域包含:无人驾驶,无人超市,人脸识别,智能家居,智能教育,智能医疗,智能安防,工业,制造业等;

同时我们深度学习大数据分析,大数据处理,语音识别,图像识别,算法新技术,引擎训练,并不断发现和探索智能带给人类的无限可能。


数据标注网属于郑州点我科技旗下人工智能数据标注平台

联系我们:

商务:侯经理

电话:17740401499

邮箱:hjh@dianwokeji.com


推荐文章

        来自巴西阿雷格里港大学的学者发表于ECCV2018的论文《License Plate Detection and Recognition in Unconstrained Scenarios》,给出了一整套完整的车牌识别系统设计,着眼于解决在非限定场景有挑战的车牌识别应用,其性能优于目前主流的商业系统,代码已经开源,非常值得参考。作者信息:展示了该系统在室外环境,角度变换等场景强大的车牌定位、识别能力。 很多车牌识别论文中常用的数据库往往是正面拍摄的,但实际应用中,各种可能的情况都有,作者首先给出了一些对车牌识别有挑战的数据示例:该文提出的系统很好的解决了这类有挑战的车牌识别问题。系统架构作者提出的车牌识别系统,包含车牌识别的所有环节,主要有三大步骤:车辆检测、车牌检测与校正、OCR。下图展示了整个系统流程:输入图像首先使用YOLOv2进行车辆检测(作者使用原始的YOLOv2,没有做任何改动),检测到的车辆图像再输入到WPOD-NET网络,进行车牌检测和车票卷曲校正系统的回归,然后对车牌进行校正输入到OCR-Net网络,识别出车牌字符。WPOD-NET用于车牌区域检测于校正系统回归示意图:平面目标的全卷积网络检测,对于系统输出的车牌区域特征图,划分成(m,n)个cell,查找高目标概率的cell,根据这些cell的位置,计算将该区域转换成方形车牌的仿射系数。WPOD-NET架构图为训练WPOD-NET对数据进行了各种常规的数据增广:车牌识别OCR部分使用一种改进的YOLO网络,其架构如下为训练该OCR系统也进行了大量数据增广:为评估该系统,作者收集了常用的数据集,并自建了挑战的数据集CD-HARD。实验结果作者将该文系统与目前主流的商业车牌识别系统相比较,包括OpenALPR、Sighthound、Amazon Rekognition。在整个数据集上取得了远超过其他系统的性能,在OpenALPR数据集上取得了与最好系统相匹敌的性能,尤其在具有挑战的CD-HARD数据集上取得了异常明显的性能优势。一些校正并识别后的车牌示例:运行速度在配置为Intel Xeon CPU 、12Gb RAM、 NVIDIA Titan X GPU的机器上,平均达到5fps。工程主页:http://www.inf.ufrgs.br/~crjung/alpr-datasets/https://github.com/sergiomsilva/alpr-unconstrained转载来源:《ECCV18|这篇论文开源的车牌识别系统打败了目前最先进的商业软件》

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。