2021了你还不知道数据标注?人工智能为什么需要数据标注

2021了你还不知道数据标注?人工智能为什么需要数据标注编写时间: 2021-2-22      来源:搜狐新闻“得数据者,得人工智能”。如今人工智能早已在我们的生活中屡见不鲜,像“Siri”、“指纹解锁”、“人脸识别”等等都属于人工智能的范畴,然而人工智能的上游基础产业,数据标注却鲜为人知。数据标注是一个极为庞大的产业,在数标行业内部,从业者也必将随着AI行业而一同

人工智能数据标注产业国家政策梳理:行业已上升至国家战略

人工智能数据标注产业国家政策梳理:行业已上升至国家战略 时间:2021-02-18    来源:消费日报网人工智能作为新一轮产业变革的核心驱动力,将进一步创造新的引擎,重构生产、分配、交换、消费等经济活动各环节,催生新技术、新产品、新产业、新业态、新模式。  近年来,我国政府高度重视人工智能的技术进步与产业发展,目前人工智能已上升国家战略。在全国人大常委会中提到要加强

产业观察丨现在还可以创业数据标注吗?

产业观察丨现在还可以创业数据标注吗?谈及人工智能,第一个映入人们脑海的算法、建模、无人驾驶、VR全景等等比较宏观的名词和行业动态,似乎忽略了作为人工智能基础底层的数据标注行业,数据是人工智能的核心之一,获取高质量的标注数据对于人工智能本身的发展至关重要。对于想要入行互联网行业的创业者而言,AI标注未来必定成为人工智能产业链的一环,但就目前的发展而言,国内的标注公司仍然处于原始阶段,因此在清沐淋看来

为什么3D点云数据在人工智能自动驾驶领域需求越来越大

为什么3D点云数据在人工智能自动驾驶领域需求越来越大1)硬件设备采集性能更好了:随着3D采集技术的快速发展,3D传感器越来越多且价格实惠,自动驾驶汽车搭载的传感系统已经包括各种类型的3D扫描仪、激光雷达和RGB-D摄像机(如Kinect、RealSense和RealSense、苹果深度相机)来进行周围环境的感知。2)3D数据可以提供更多的维度信息这些传感器获取的3D数据可以提供丰富的几何、形状和比

什么是人工智能?很多人至今仍然不知道AI是什么

“具有执行感知功能(例如感知,学习,推理和解决问题)的能力的机器被认为拥有人工智能。当机器具有认知能力时,就会存在人工智能。 判断AI的基准是涉及推理、语音和视觉是否接近或达到人类水平。”一、入门人工智能弱AI(Narrow AI):当机器可以比人类更好地执行特定任务时。通用AI(General AI):人工智能可以以与人类相同的精度水平执行任何智力任务时达到通用状态。强AI(Strong AI)

数据标注:拐点将至

数据、算力、算法是推动人工智能技术进步的“三驾马车”,其中数据是人工智能行业的发展基石,数据对人工智能很重要,“没有好的数据,人工智能没有未来”早已是行业共识。新变化在于,随着人工智能技术落地场景,不同场景提出了更高质量、更多元的数据需求。对视觉数据标注需求非常大的自动驾驶领域,很好地展现了数据标注服务的业态变化。在2016年,人工智能随AlaphGo强势崛起并引发一系列创业、创新活动后,数据标注

数据标注:正在标注现在

数据标注师是随着人工智能的发展出现的一个新兴就业岗位。2020年2月,“人工智能训练师”正式成为新职业并纳入国家职业分类目录。数据采集和标注是人工智能训练师的主要任务之一。数据标注师的工作是教会 AI 认识数据,有了足够多、足够好的数据,AI 才能学会像人一样去感知、思考和决策,更好地为人类服务。例如,疫情期间,百度山西数据标注基地完成的戴口罩的人脸图像标注,采集大量的戴口罩的人脸照片后,数据标注

了解数据标注的任务

了解数据标注的任务近年来,伴随着人工智能的不断发展,与人工智能相关的各个产业也开始逐步发展壮大并走入人们的视线。其中,数据标注作为人工智能的基础产业,更是以极快的发展速度引发了关注,并且正在成为越来越多人的择业选择。但是对于数据标注,大部分人的了解仍然处于基本真空的状态。那么,数据标注到底是干什么的呢?要想了解这个问题,首先需要了解人工智能的核心技术:计算机视觉。何谓计算机视觉?简单来说计算机视觉

数据标注师:AI学习的老师

数据标注师:AI学习的老师如果把人工智能比作一个懵懂的幼童,那么把数据标注师看做是人工智能的“老师”也毫不为过。人工智能机器要想认识世界需要依赖大量已经标注过的数据,数据标注让机器理解并认识世界,是人工智能金字塔的基础力量。相比于人工智能行业的繁荣与夺目,数据标注则显得似乎没有那么耀眼,甚至在前期还被贴上了很多偏见。殊不知,在人工智能高速的发展进程之下,数据标注早已经实现了“脱胎换骨”,成为了新时

数据标注师:人工智能时代的新热门岗位

近年来,伴随着人工智能行业的不断发展,人们已经可以清楚感受到未来智能化、数字化时代来临的脚步。在新时代之下,未来的职业分类也必将迎来新的变化,而数据标注师成为了第一个数字时代的热门行业。    在数字时代,尽管一些旧的行业会被逐渐淘汰,但是必然会有大量的新行业诞生,一方面,数字技术辅助工作者简化办公流程和提升办公效率,可视化办公软件广泛应用等简化对于工作者记忆力、运算能力甚至学习底层程序的要求。另

人工智能时代即将到来,听李彦宏谈数据标注与就业

人工智能时代即将到来,听李彦宏谈数据标注与就业  伴随着人工智能的发展壮大,不少曾经只出现在电影中的画面渐渐照进了现实,在改变了人们生活的同时,也引起了不少的担忧,其中争议点最大的问题便是人工智能会不会取代人类,导致失业潮的来临?其实这样的担心大可不必。近日,百度创始人李彦宏先生在做客某档节目是便谈到了人工智能对就业产生的影响。AI时代,就业方向在哪?或许数据标注能够给出答案。    人工智能会取

人工智能时代下,数据标注不应该被陌生

人工智能时代下,数据标注不应该被陌生  人工智能的兴起带火了一系列与其相关的产业,数据标注作为其基础产业之一,也在人工智能的加持之下短短几年内迎来了飞速的发展。然而对于不少人来说,数据标注仍具是一个“盲区”。那么什么是数据标注,他又是如何助力人工智能发展的呢?         要想了解数据标注,首先需要了解人工智能的学习方法。监督学习是目前应用最广

AI技术在音乐类产品中的应用场景:你听的歌是AI写的?

自动标注、平滑过渡、音乐鉴权、AI创作,当AI技术应用于音乐行业为人类的精神文化与娱乐生活带来便利和更多选择时,也是一件让人激动不已的事情。随着深度学习算法的出现、大数据和5G技术的成熟,AI人工智能已逐渐融入我们的生产生活中,在教育、医疗、政务办公、城市管理等多个方面发挥作用。随着AI技术在音乐行业研究及应用的深入,音乐人工智能已经不新鲜,很多新的应用和产品已经惊艳亮相。基于对于音乐技术及产品的

看不见的AI技术,带你了解智能世界秘密

互联网科技高速发展的今天,AI技术虽然看不见,却已经渗透进了生活的方方面面,也许你没有意识到,也许你已经习惯了,在你周围的日常场景中,其实都有人工智能的应用哦~交通出行交通出行是城市生活中重要的一环,也是AI最容易落地的场景之一。无论是选择自驾,还是乘坐飞机、高铁,都离不开“天眼”巡查、防爆安检。人脸识别、大数据分析等技术,为城市的交通运输、安防工作提供支持与保障。随着科技的升级,刷脸进站替代取票

AI时代来临,你将何去何从?

人工智能的产生是人类社会发展的趋势,所产生的必然产物。从第1次工业革命开始,人类为提高效率发明了蒸汽机。蒸汽机的加入是人类的生产效率,得到了初步的提高。蒸汽机解决了人类生理疲劳的和工作耐力的问题。从而达到生产效率的提高。第2次工业革命。内燃机的发明和电力的使用,使生产效率呈几何倍增长。重新定义并改变了生产模式及方法。第3次科技革命,原子能空间技术,计算机网络,既是第一二次科技革命的延续。就是向第4

击碎数据标注五大误解,这门生意真不是你想象的“富士康”

“我觉得标注行业一直在承受误解,特别是在被贴上人工智能界‘富士康’的标签之后。”“外界会觉得:AI这么高大上,背后却是一群打标签的人。(他们)想刻意制造反差,就直接(把标注)定义成劳动密集型行业。”见到钛媒体编辑时,倍赛数据CEO杜霖忍不住吐槽道,“我不想让人再去看小作坊,想让人看看业内还有我们这种技术公司。”2015年前后,AlphaGo横空出世,掀起了国内AI创业的浪潮。五年间,人工智能行业在

数据标注是AI实现智能的关键

新基建浪潮呼啸而来,人工智能产业乘风而上。AI作为许多领域数字化与智能化转型的基础与关键,在这场时代风口前迎来了新腾飞。这场自上而下的变革中,大量AI需求被释放,直接刺激了源头产业,站在人工智能产业链上游的数据服务商,首先吃到了红利。据国内知名AI数据服务商景联文科技透露,近几个月来,公司接洽的客户量明显上升,有几个科技大厂订单进入了合同阶段,其中一个“万人采集”的项目已经启动。对于人工智能产业而

数据标注员 人工智能背后的人工力量

数据标注员 人工智能背后的人工力量“导语:机器学习必需数据标注”  “目前我国已有庞大的数据加工队伍,仅北京就有一百多家专门从事数据标注的公司,全国从事这项工作的人大概超过千万,很多头部的互联网技术企业都有自己的数据标注公司。”        目前人工智能落地场景不断丰富,智能化应用正改变着我们的生活。而在AI产业高速发展的背后,数据标注师这个新职

人工智能数据标注领域的核心需求

随着人工智能落地商业化进入快车道,无人驾驶、人脸识别、智慧安防等领域成为了热门的应用场景,AI公司关注的重点开始聚焦于产业落地能力上。作为人工智能行业的基础,数据是实现这一能力的决定性条件之一。因此,为机器学习算法训练提供高质量的标注数据服务成为了决定人工智能应用高度的重要条件之一。相关资料统计显示,2025年产生的数据量将高达163ZB,其中90%是非结构化数据。这些非结构化数据只有经过清洗与标

数据标注的6大应用场景

数据标注产业的发展,促进了人工智能的蓬勃兴起,其主要的应用行业和不同行业的标注场景总结如下:(1) 自动驾驶:利用标注数据来训练自动驾驶模型,使其能够感知周围的环境并在很少或没有人为输入的情况下移动。自动驾驶中的数据标注涉及行人识别、车辆识别、红绿灯识别、道路识别等内容,可以为相关企业提供精确的训练数据,为智能交通保驾护航。(2) 智能安防:数据标注扩大了现有安防系统的感知范围,通过融合各种来源的

推荐文章

之前“重庆公交车坠河”事件引起了全国人民的关注,使得交通安全问题再度成为公众关注的热点话题。小喵也针对交通事故做了调查,结果真是触目惊心。2016年全国交通事故发生总数达到212846起,造成226430人受伤,63093万人死亡,竟然同冰岛的全国人口数相当。在这些冰冷的数据背后,是一条条鲜活的生命,有效保障人民的交通安全,成为所有人的共同愿景。 在这些交通事故中,有很大一部分为疲劳驾驶、开车“低头族”造成的。疲劳驾驶状态下,驾驶员闭眼的1秒,事故率陡然升高;“低头族”看一眼微信的2秒内,可能就终结了一个人的生命。国家也出台了相关法规整治酒后驾车与开车“低头族”的问题,但是由此引发的事故仍旧屡见不鲜,提出更加高效的解决办法就显得更加迫切了。 科技的进步推动着社会的发展,前些年开始流行的“互联网+”为人们的生活提供了极大的便利,而近年开始成为热点的人工智能又开始同产业结合,改变人们的生活。就安全驾驶的问题而言,驾驶检测系统在AI的大背景下应运而生,改变着每个驾驶员的生命之路。 安全驾驶检测系统,是基于对各类交通图片数据的识别,通过深度学习,实现智能的对安全驾驶进行提醒与警告。其功能包括行人碰撞预警、前车碰撞预警、车道偏离预警、疲劳驾驶检测、盲区检测预警、夜视辅助系统等诸多功能,来保证驾驶安全。 行人碰撞预警系统(Pedestrian Collision Warning),基于计算机视觉的图像算法,检测行驶车道上静态和动态的行人,提前预警,防止行人碰撞事故的发生。 前车碰撞预警系统(Forward Collision Warning),它通过感应和计算在行驶过程中车辆与前车的距离来判断潜在的碰撞风险,并立即发出警示。 车道偏离预警(Lane Departure Warning),通过ADAS算法监测车辆在车道中的位置,当车辆压线或者即将压线时向司机发出警告,防止因车道偏离造成的交通事故发生。 疲劳驾驶监测(Driver Fatigue Monitor),通过视觉传感器对人的眼睑眼球的几何特征和动作特征、眼睛的凝视角度及其动态变化、头部位置和方向的变化等进行实时检测和测量,对疲劳驾驶行为进行预警。 盲区监测预警(Blind Spot Monitor),通过在驾驶者视觉盲区覆盖安装摄像头,帮助驾驶者看清盲区的路况信息,对盲区潜在碰撞进行预警。 夜视辅助系统(Night Vision),是一种源自军事用途的汽车驾驶辅助系统。在这个系统的帮助下,驾驶者在夜间或弱光线的驾驶过程中将获得更高的预见能力,能够针对潜在危险向驾驶者提供更加全面准确的信息或发出早期警告。 安全驾驶的功能,实现的基础是各类海量的图片数据,诸如各类驾驶员的图片资料、车辆行驶状况图片、车道线识别图片、信号灯图片、行人图片信息都是确保系统正常运转的基础,如果在数据环节出现错误,Uber无人车的车祸便是典型案例。 点我科技正是为无人驾驶与安全驾驶系统提供高质量数据服务的专业数据服务商,丰富的数据采集经验,涵盖了无人驾驶所需的全部领域,为安全驾驶系统提供数据基础,从根基层面保障驾驶安全。同时同各个人工智能厂商的合作,积累了丰富的数据经验,获得了广泛的好评。龙猫数据正在成长为数据行业的的领跑者,服务AI产业,筑基智慧生态。

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。