2020年2月4日数据标注任务汇总

2020年2月4日数据标注任务汇总数据标注需求发布如下:任务一、3.2万人黑白黄棕人种照片采集,详情点击右侧  数据标注任务二、10万小时语音标注项目,全年不断档,详情点击右侧  语音标注任务三、3万张人脸106点图片标注,详情点击右侧  人脸106点以上任务来需要正规公司参与公司介绍,项目经验,能开专票,能签合同,有意请打开详情联系负责人。联系时请带上备注,说明来意

新兴的数据标注行业遍布全球,全世界人都在为人工智能打工!

AI的新员工:数据标注行业遍及全球 在印度和菲律宾等低收入国家工作的数十万人 数据注释公司iMerit在印度加尔各答的办公室员工。随着公司越来越接受人工智能,新兴行业正在兴起,在该行业中,员工被用来“训练”算法以识别各种类型的数据 ,马达胡米塔·穆尔吉亚(Madhumita Murgia) JULY 24 2019 打印此页 26 在印度城市加尔各答的边缘,在拥挤不堪的梅蒂亚布鲁兹(M

数据标注加盟项目是骗人的吗?数据标注项目加盟怎么样?

        随着互联网新媒体的迅速发展,以今日头条、火山、抖音、快手等社交媒体也迎来了爆发性的成长 ,无论是偏远的大山深处还是农村在家带孩子的妇女,宝妈群体各行各来的人们获取信息的速度和途径都 显得极其多样化,快速化,网络的信息量也是爆炸性的成长。      &nb

数据标注兼职能做吗?

        随着人工智能的迅猛发展与之相关的数据标注行业这几年也迎来了爆发性的成长,从事数据标注行业的人员快速的增长。        人们慢慢开始了解到数据标注之后发现数据标注行业门槛低,于是有一部分平时工作轻松人的就考虑数据标注兼职能

为什么有些人说数据标注就是个坑?

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。 &n

数据标注行业知多少?数据标注行业目前的现状?

据相关资料显示,在中国至少有10万的全职数据标注员以及达到100万的兼职数据标注员。看到这个数据,不禁想问数据标注到底是一个怎样的行业?其实早在1998年第一家标注公司成立的时候,该行业就已经出现,只是那时人工智能尚未兴起,数据应用相对较少,直到2011年以后针对人工智能的数据标注才逐渐出现。人工智能行业离不开数据标注行业。为什么这么说呢?因为对于人工智能企业来说,优质的数据是不可或缺的。换而言之

数据标注员兼职平台有哪些?有哪些数据标注兼职平台?

         数据标注行业的快速发展导致从事数据标注行业的从业人员也呈现爆发性成长,正是因为数据标注行业从业门槛低,需求量大,从而也出现了大量的数据标注兼职人群。        那么对于很多想从事数据标注兼职的人群来说目前数据

怎样才能做好数据标注?怎样做数据标注项目?

        随着数据标注行业的快速发展,从事数据标注行业的人员越来越多,而对与刚开始或者 即将从事数据标注的人来说怎样才能做好数据标注?怎样做数据标注项目?这个问题确实很令人困惑。        那么到底怎么才能做好数据标注?怎样做数据

数据标注从哪里接单?数据标注从哪里接到一手的项目?

     近年来随着人工智能行业的爆发性发展,随之带来的是人工智能相关的数据标注行业也迎来了爆发性发展。    接下来我们就讲下人工智能相关的数据标注行业问题。随着数据标注行业的快速发展,行业从业人员的爆发性增长大量从业人员在经历行业入行初期阶段之后,因为数据标注行业创业门槛很低就出现了相当一部分人员就走进了

有哪些靠谱的数据标注接单平台?

                     人工智能产业的迅猛发展带来与之相关的数据产业的爆发性成长,人工智能相关的数据标注需求是庞大的。     &n

数据标注项目怎样报价?怎样对数据标注项目进行报价?

    AI人工智能的蓬勃发展也带动了与其相关的数据标注行业的爆发性成长,经过最近几年的迅猛发展之后,目前数据标注行业的经营模式已经慢慢稳定下来。    对于目前来说随着风投资金对行业的热情减小,无论是头部大型的人工智能企业还是其它互联网企业人工智能项目的研发,他们对底层数据需求的市场把控,成本状况都已经非常的清楚,也

数据标注项目怎么样?数据标注项目能做吗?

        数据标注是人工智能产业的基础,是机器感知现实世界的起点。从某种程度上来说,没有经过标注的数据就是无用数据。机器识别事物主要通过物体的一些特征。被识别的物体还需要通过数据标注才能让机器知道这个物体是什么。        对与提

数据标注行业的接单方式有哪些?

    数据标注行业伴随人工智能技术的发展而兴起,目前正在快速发展中。根据百度研究院估算数据标注产业将在2020年超过500亿元规模。只要从业人员能够掌握相关的技能就能获得一份稳定的工作和收入来源。    大部分人看来,人工智能是个有些「科幻」的词汇,代表小说电影中和人类长相相似、或温柔或冷酷的机器人。稍微熟悉一点,这

数据标注接单平台有哪些?

    最近几年人工智能行业异常的火热,最显著的代表性行业就是无人驾驶的发展。其实有相当一部分人都对这个行业有好多问题都不明白:人工智能到底是怎么回事?数据标注到底是做什么的?到底怎么实现人工智能?等等。    我们今天就来讨论下人工智能相关的数据标注行业。那到底数据标注行业是怎么一回事儿?数据标注接单平台有哪些?数据

百度能否成为全球智能音箱第一大厂?

百度有一天在某硬件领域成为全球第一,这句话似乎听起来很离奇。如果说这个领域的直接对手,是亚马逊、谷歌、苹果等北美科技巨头,那几乎就更有点神乎其神了。 然而根据Canalys最新数据报告,在2019年Q2百度智能音箱出货量继续居于国内市场第一的前提下,已经超过谷歌攀升到了世界第二,前面只有亚马逊最早入场的智能音箱Echo,这个占尽天时地利的对手。  要知道,从小度在家发

AI换脸不管有多厉害都无法突破支付宝的安全体系

  9月2日消息,在刚刚过去的周末,一款面向大众的AI换脸软件“ZAO”瞬间爆红网络,朋友圈不少人开启了自己的换脸之路。在AI换脸走红的同时,ZAO也被指涉嫌过度攫取用户授权、侵犯隐私、盗用版权以及引发公众对刷脸支付安全的担忧。   对此,支付宝安全中心8月31日发布公告称,目前各类换脸软件不管换的有多逼真,都无法突破刷脸支付。即便出现账户被冒用的极小概率事件,资金损失也会通过保险公司进

创新工厂李开复:AI+”有四个阶段

编者按:这是创新工场董事长李开复在2019上海世界人工智能大会上的主论坛演讲。   此前对于AI开启的行业赋能,已经被很多次阐释、验证并不断产出成果。   但对于“AI+”的发展路径、逻辑和未来,在李开复之前还没有人有过如此大道至简式的分析。   或许跟李开复的履历和现在密不可分。他是80年代的计算机博士,论文成果就是AI领域的研究,是懂AI的科学家。   

介绍下数据标注平台的运营模式

    目前AI行业发展火热各大巨头都投入巨资在此领域布局,智能驾驶、人脸识别以及近段时间正火的AI养猪都是AI技术应用在实际生活上的体现,毫不夸张的说AI技术正在逐渐改变我们的生活而我们的生活也将因此变得更美好。     AI的发展离不开数据标注的支持,而目前AI行业庞大的数据标注工作都 是通过 哪种模式完成的呢?&

数据清洗在人工智能基础数据方面的重要性。

数据清洗、数据采集、数据标注——人工智能时代不可或缺的产物随着信息处理技术的不断发展,各行各业已建立了很多计算机信息系统,累积了大量的数据。为了使数据能够有效地支持组织的日常运作和决策,这就要求数据可靠无误,能够准确地反映现实世界的状况。数据是构成信息的前提和基础,好的数据质量是各种数据分析如OLAP、数据挖掘等有效应用的基本条件。人们常常抱怨“数据丰富,信息贫乏”,究其原因,一是缺乏有效的数据分

何为数据标注数据清洗?

        数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。        数据清洗的主要包括:纠正错误、删除重复项、统一规格、修正逻辑、转换构造、数据压

推荐文章

     近年来随着人工智能行业的爆发性发展,随之带来的是人工智能相关的数据标注行业也迎来了爆发性发展。    接下来我们就讲下人工智能相关的数据标注行业问题。随着数据标注行业的快速发展,行业从业人员的爆发性增长大量从业人员在经历行业入行初期阶段之后,因为数据标注行业创业门槛很低就出现了相当一部分人员就走进了数据标注创业的大军。    对与数据标注行业创业公司工作室的创业者来说,"数据标注从哪里接单?数据标注从哪里接到一手的项目?";这个问题始终伴随着他们,有的数据标注创业者是在创业前期都要考虑的,有的是创业一段时间之后才会发现这个问题的紧迫性。     多数创业者以及想创业的人对与数据标注从哪里接单?这个问题是非常的困惑。下面我们就来讨论下数据标注项目都是从哪里接单的。    目前AI行业除了行业头部百度、京东、阿里这些公司有丰富的行业资源之外,有相当一部分公司他们的AI项目底层的数据采集,数据清洗,数据标注都是外包出给其它公司或者团队的。    点我科技从16年进入数据标注行业,下面就从我们在标注行业这几年的经历来介绍下标注行业项目的接单模式:    一、从专业大型的数据服务外包公司接单,如数据堂、倍赛、海天、数加加这类规模比较大的公司他们有大量的投资人行业资源对接,行业影响力大项目相对来说比较多。    二、有部分公司或者工作室他们有大的数据外包公司 人脉资源,从而能获得相对多的项目    三、就是从有些公司接二手三手的标注项目,这类公司在行业QQ群,帖吧非常活跃他们这种公司就是以接包转包为主    四、靠长期行业积累的人脉及客户口碑给介绍来的一手项目。    五、有相关一些小工作室 小公司他们主要是靠贴吧,行业QQ群来接一些二手项目,这类工作室公司往往会因为转包方跑路或者是项目方结不到款而蒙受损失。    六、还有一类公司他们靠建立自己的官方数据标注平台行业交流平台来聚集人气从而获得甲方的项目合作,比如点我科技旗下就有 点我科技 官网和标注行业第一个行业交流项目信息发布需求的平台找标注网站。    以上差不多就是目前标注行业主要的几种接单途径,在这里也劝中小工作室在接项目的时候要仔细认真的分析项目及项目发包方,一定要找信誉好签合同开发票的项目方,尽量避免白劳动的情况 发生。     ”数据标注从哪里接单?数据标注从哪里接到一手的项目? "这应该是个长期的过程,希望大家不要心急。     找标注网站是目前标行业尽有的行业人员项目交流团队对接项目发包的免费平台,平台聚集了相当一部分长期的标注公司,大家可以长期关注,希望大家能找到有用的公司项目。     

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。