数据标注:拐点将至

数据、算力、算法是推动人工智能技术进步的“三驾马车”,其中数据是人工智能行业的发展基石,数据对人工智能很重要,“没有好的数据,人工智能没有未来”早已是行业共识。

新变化在于,随着人工智能技术落地场景,不同场景提出了更高质量、更多元的数据需求。

对视觉数据标注需求非常大的自动驾驶领域,很好地展现了数据标注服务的业态变化。

在2016年,人工智能随AlaphGo强势崛起并引发一系列创业、创新活动后,数据标注迎来第一次真正意义上的爆发,但由于当时各公司的人工智能业务多处于“跑Demo"、“做研发”的落地前环节——在质上,用标准数据集就可满足;在量上,规模也不可与现在相比。

所以当时的数据标注行业门槛较低,小作坊遍地开花,然而,从近两年的市场数据来看,第三方数据标注与审核公司开始变多;原本十分分散的数据标注行业走向专业化的拐点正在发生。随着人工智能在金融、医疗、安防等多个领域实现技术落地,人工智能公司对数据的使用逐渐有“大”的趋势,整个行业正在逐渐向多模态、多场景、高精度的方向发展。而促进这些变化的根本原因主要是三点:

一是成本问题。随着数据量越来越大,如果雇佣大量人力进行数据标注,大多数人工智能公司都无法攻克人员管理的挑战和承担随着数据量增长的巨额薪资。

二是质量问题。因为散兵游勇和小型工作室,较难在岗前培训、质量控制和数据安全上做足够的投入。

三是客户结构改变带来的新机会。即除了人工智能公司或有相关业务的科技公司外,各行各业的企业都开始更多投入数字化和人工智能,其中部分企业,一方面有对外采购技术服务的习惯和流程,一方面又缺乏非常先进、成熟的内部人工智能技术,比如无法像很多人工智能公司那样,快速开发自己的标注提效工具,这类公司会更加倚重专业的第三方服务,这扩大了整体市场规模。

在数据标注行业拐点将至的时候,对于专业人才的需求逐渐浮出水面,AI优评在人才培养方面率先迈出了步伐,通过与权威机构的官方合作,AI优评建立起一整套科学的人才评价模型,并且为通过评价考核的学员颁发由国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,为行业发展做出贡献。



推荐文章

说到人工智能,除了某些很酷的前沿应用外,其实对于这个话题我们经常会想到「假」这件事,用人工智能完成的造假除了一些灰产之外,更成为了一种娱乐方式,其中最有名的可能就是 AI 换脸的了,这种换头术至今还在 B 站大肆流行着。相反的,AI 应用在现实中带来的「真」变化可谓少之又少。不过最近美国麻省理工学院的研究人员发现了一种与「造假」相反的 AI 研究,这种研究反而需要 AI 来点「真」的东西,准确的说是针织的东西。这项研究让人有点出人意料,谁能想到机器学习的能力会用在复制针织品身上呢?▲ 图片来自:Shima Seiki USA Inc.首先我们要回答一个问题:为什么不能直接交给 Shima Seiki 这样的自动针织机进行「复制」或「创造」。关于这件事如果你拿出几件自己的针织衫看一下可能就知道答案了,在很多的针织品中实际上表面并不是完全平整的,商家为了满足个性化需求通常会在针织品上再做出不同的针织图案,而这些图案的织法和其它地方是不同的,也正是因为了有了这部分「创意」存在,死板的自动针织机就无法完成这项任务了。▲ 图片来自:zdnet为此研究人员中有了一项新的想法,要使用自动针织机需要大量的专业知识为其「编程」,所以他们想出了用一种方便理解的软件去简化这个流程,即便是没有相关经验的人也能够上传自己的作品。但即便如此这仍然需要大量手动去设置指定图案的织法,而这就是机器学习有趣的地方,通过神经逆编织网络,它可以通过算法去学习针织手法。然后将真实的织法与设计图案相结合,并转换成自动针织机能够识别的指令。你可以将这种模式成为「计算编织」。不过就如包含补充材料的论文中详细描述的那样,神经网络必须计算两个不同的东西:它必须首先计算所展示的服装的理想表现形式,然后再计算所涉及的针脚。▲ 图片来自:zdnet首先,神经网络被送入两种样本,即作者从头开始编织然后拍摄的针织服装真实照片,然后由他们的软件合成服装图像。合成之后的图片会比真实世界的照片更简洁。为了将设计图案与真实图案进行融合,AI 其中起到了很大作用。▲ 图片来自:zdnet 然后进行 IMG2PROG,就是将图案转换为指令,支持将这种像「混合图层」之后的合称图案导出指令,为了简化过程,程序开发者定义了 17 条基本针织手法的指令标签,而合成图案上会带有这些标签,再通过神经网络与这些标签进行「交叉熵」优化,最后完成机器统计,再输入自动针织机,大功告成。这就是 AI 有趣的地方,它是一个人与机器之间沟通的桥梁,理解人类的自然语言、想法已经创造力,并将其转换成机器与数字世界的语言。在未来,很多事你未必懂得具体的实现过程,但只要你有足够的想象力,AI 就能帮助你将其变成现实。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。