通用语音数据标注规则


2、标注规范 ——3项(文本、无效、性别)

 

 注: 文本正确率:95%     其它(无效+性别)正确率:95%

 

注:一定不要多字、漏字!!

2.1性别

类别

分类

定义

性别

童声

童声指小孩非常稚嫩的声音,大概是在5岁以下的范围。大孩子的声音归到男女。

其他

没有人声,或者男女混声的统一规为其他

 

注:女生之间的对话性别是女,男生同理;只有男女相混的对话是其他

2.2判断是否为无效语音

无效:

1、主体人声音的前面、或后面、或中间:有一段安静或噪声等非人声 ,长度在2秒以上(宽条是0.3秒)。

【注意整句无人声的不是无效】

2、声音是转格式转错的。

无效语音,直接打勾,文本不用修改。

3.全英文的句子听不懂标无效

有效:其它都是有效

 

2.3修改文本

标注文本,目的是耳朵听到“普通话或带口音的普通话”标成普通话文本,严重听不懂“方言”,可标注#

2.3.1标注#的情况

(1)听不懂、听不清的词或方言标注#

(2)英语语句中,听懂的单词标注出来,听不懂的标注#

3)除英语外其他国语言#,发音如“萨瓦迪卡”,“阿尼哈塞呦”等必须标#

4)粤语标注#

5)噪音标注#

6)遇到拼音标注#,如“阿啵呲嘚”等拼音

7)整句无人声,只有噪音,不超过2S的标#,如一个人整句咳嗽声

 

注:

#可以代表一个字不清楚或者几个字不清楚;

一句话中可以出现最多两个#,但不能 同时  ##  这种形式出现;

最多可以 #文本# 这种形式出现;

2.3.2姓名问题

(1)姓:必须标注正确,确定是有这个姓

2)名字:名字可以打同音字

 

2.3.3地名问题

(1)省市等较大地名必须查清楚,不能出现错字:如浙江省无锡宜兴市

 

2)较小的地名,如村镇以及道路、小区等可标注同音字。

 

2.3.4数字问题

1)听到的阿拉伯数字写成汉字,如“一二三四五”或“幺二三四五”

 

2.3.5儿化音问题

(1)带儿话音的,可以写出“”字,并且加括号;或者直接不打儿化音,皆可
例如:我得了5分儿,文本要写成:我得了五分(儿)/我得了五分


注意:不是儿化的不用加,如女儿,婴儿等不是儿话,就不能加在“儿”字上加括号。

 

2.3.6语气词问题

(1)注意口语的字口语中,结结巴巴说出的,要写出对应接接巴巴声音的字。

 

(2)口语中,“嗯”、“哦”、“啊””等,要准确对应文本。例:声音“呀”,不能写成:“啊”

 

2.3.7英语相关问题

(1)单词:英语单词,整个单词要小写。如“happy

 

(2)字母:说字母的写成字母,要写成大写。如“A  B  C  ”。注意:QQ、MSN,是字母发音,要写成大写。

 

注:英文单词发的不标准,如能听出是哪个单词,就写单词。

整句都是英文句子的情况:

一句话中发音不清楚的单词,标#,发音清楚的单词必须写出单词

整句英文都听不清楚时,标为无效,不要整句标为#。

英文用中文谐音写出来的,算错。如:black 写成 布莱克 算错

一些地名,人名按英文读的,需要写英文,如:I am gonging to shanghai  不能写成“上海”

其他国语言,发音如“萨瓦迪卡”,“阿尼哈塞呦”等必须标#

 

 

2.3.8混音问题

混音包括3类:

1、当前电话通话的两个人同时说话,相混

2、当前人声与较亮或尖锐的音乐声(如铃声、汽车喇叭)相混

 

混音部分的标注方法:

1)如果非主体人插话不影响对主体人说话的理解,标注员可以听出主体人说话的字,则要求写字。(不要出现一个音对应两个字)

例如:非主体人插入的话,音量小、字数少,可忽略当成没听见。

 

2)如果非主体人插话,造成标注员已听不出主体人混音部分的字,则要求混音部分标#

 例如:非主体人插入的话,由于音量过大相混在一起,听不清主体的话,混的部分写#

 

3)如果音乐声相混,不影响对主体人说话的理解,标注员可以听出主体人说话的字,则要求写字。

如果音乐声相混,造成标注员已听不出主体人混音部分的字,则要求混音部分标#

3:增加#的情况

人声中出现突然间的大噪音且与人声不相混,包括铃声、叮声、咳嗽、扑话筒、有大的音乐背景等,写1个#。

人声前边或后面出现一片乱乱的小声说话、持续的背景噪音,写#和不写#都可以。

注意:安静的静音处,不能写#。

 

 

2.3.9 标注页面蓝条与黄条使用

 

蓝条和黄条的功能有3个

1尺子,表示0.3秒,可以用于量取2秒判断无效。

2选中功能。选中的是播放蓝条最左端到黄条最右端的声音。当语速特别快时,建议分段选中去听,写下文本,正确率会提高。

3确定#在哪儿出现。

 

 

 

标准普通话与带口音的普通话对照表:

类别

定义

特例

举例说明

无口音

拼音、声调都正确

轻口音

拼音对,声调不对

n和l不分;

n和ng不分;

z/c/s和zh/ch/sh不分

属于轻口音

那个,发音:la4 ge5(标准na4 ge5 )

电信,发音:dian4 xing4(标准dian4 xin4)

平时,发音:pin2 shi2(标准ping2 shi2)

政治,发音:zeng4 zi4(标准zheng4 zhi4)

刚才,发音:gang1 chai2(标准gang1 cai2)

重口音

拼音不对

(n和l不分;n和ng不分;z/c/s和zh/ch/sh不分)除外

湖南,发音是 fu2 nan2(标准hu2 nan2)

歌曲,发音是guo1 qu3(标准ge1 qu3)

 

推荐文章

远在非洲的数据标注工厂也在为人工智能打工他们也会服务中国的人工智能公司人工智能背后不为人知的贡献者——生活在肯尼亚贫民窟的一群人。在非盈利组织Samasource的帮助下,他们为硅谷大型科技公司的人工智能研究提供数据标注服务。我们一起来看看国外的数据标注到底是什么样的人工智能如人们预期工作时,硅谷企业总喜欢说一切“好似魔法”。但实则不然。魔法的背后是布兰达(Brenda),一位26岁的单身母亲。她目前居住在非洲最大的贫民窟基贝拉(Kibera),或许这里也是全球生活最艰难的社区。在这里,成千上万人住在一个比伦敦海德公园大不了多少的地方。每一天,布兰达坐着公交车前往肯尼亚首都内罗毕东部。在那里的一栋大楼内,她和其他1000多名同事为人工智能的另一面——我们所知甚少,所见更少的一面——辛勤付出。在八小时的工作时间内,她需要负责创建训练数据,即把数据——大多数为图像——加工成计算机可以理解的形式。布兰达(左)布兰达先是上传一张图片,然后用鼠标跟踪里边的所有物体。人、车辆、路牌、车道标记——甚至天空,还要特别说明是晴朗的还是阴霾的天空。将数百万张这样的图片输入到人工智能系统中,意味着(比方说)一辆自动驾驶汽车可以开始“识别”现实世界中的物体。数据越多,理论上机器越智能。在狭小的办公室里,她紧挨着身边的同事,紧盯着显示屏,放大图像,防止标错哪怕是一个像素。一名上级人员会检查他们的工作,若没有达到要求,就需要返工。速度最快、准确率最高的训练员的名字可以出现在办公室的多台电视机屏幕上以作鼓励。而最受欢迎的奖励则是:购物券。“你可以做一些与众不同的事情,”当我拜访她时,布兰达告诉我说。她和自己的女儿,兄弟还有母亲一起蜗居在一间拥挤的小房子里。“我现在的工作,让我相信我的努力正为未来的某些人提供帮助。”贫民窟学校布兰达的雇主是Samasource。这是一家总部位于旧金山的公司,客户包括谷歌、微软、Salesforce和雅虎等。这些客户大多数都不会希望讨论他们与Samasource合作的细节本质——因为大多与未来项目有关——但可以说,在贝罗毕这栋大楼里准备的数据,构成了硅谷一众大公司在人工智能领域得以开展研究的重要一部分。布兰达在标注数据。这种技术进步或许永远都不可能出现在基贝拉这样的地方。作为非洲最大的贫民窟,这里有太多亟需解决的问题,比如缺少清洁淡水,以及众所周知的卫生危机。但这不代表人工智能不会在这里产生积极的影响。当我们在这个下雨天驱车前往基贝拉少有的几栋永久性建筑之一时,我们发现,这栋位于铁路线附近的建筑虽残破不堪,但显然自殖民以来经常性为人们所使用。大约一年前,这栋建筑是扔石头的暴徒与军队之间的分界线。今天,它已经成了一个蓬勃发展的活动中心,里边有一个媒体学校和工作室,有一个自助餐厅;而在楼上的一个房间里,满满当当的都是台式机电脑。在这里,吉迪恩·恩尼欧(Gideon Ngeno)教授向25名左右学生传授个人计算机的基础使用知识。在这个过程中有趣的一点是:哪怕是在基贝拉这样的地方,人们的数字化素养其实不低。这里,智能手机十分普遍,其它所有商店都有充电器和手机配件等出售,并且人们会使用移动支付系统MPesa来购买这些东西。为自动驾驶做数据标注的范围包括人、车辆、路牌、车道标记——甚至天空。但非洲的大多数地区都没有经历过台式机电脑的年代。键盘和鼠标的组合对他们来说完全是一种新奇陌生又复杂的体验。一名Samasource的团队成员告诉我说,在被要求搜索互联网上的信息时,她经常观察到有学员不是看着电脑,而是拿起他们的手机。在这里教授的课程则是为那些希望继续在Samasource等数字经济公司工作的人专门设计的。学费为500肯尼亚先令(5美元左右)。对那些经常生活在贫困线以下的人来说,这个费用也还可以承受。公司一开始是免费提供课程的,但我后来得知,由于没有经济上的付出,考勤(和上课认真程度)都不太理想。恩尼欧教授说,目前上课最大的困难是噪音——就在我们说话的间隙,一群小孩子发生阵阵吵闹声。而在外边,又是一个人来人往十分嘈杂的集市。适合加州的园区相比之下,Samasource在内罗毕的办公室位于一处发展形势比较好的位置。公司位于一商务园区建筑内,总共占据四层楼,拥有大量用于数据训练的计算机。数据标注可以让一辆自动驾驶汽车开始“识别”现实世界中的物体。如果不看窗外景色,你恐怕会以为自己身处于一家硅谷科技公司内部。墙上贴着瓦楞铁皮,这种装饰方式放在加州的话算得上走在时髦前沿。但是,提醒你这是在非洲——而不是加州——的一点是:大部分工人(近75%)来自平民窟。最令人印象深刻的是,Samasource克服了大多数硅谷企业努力想要解决的问题。近半数的员工为女性,这在母亲同时也负担家庭经济的国家,实属了不起。在这里,有哺乳室,长达90天的产假,以及灵活的轮班模式。这些均让这家公司不仅在肯尼亚,就是在全球,也是一个出色的榜样。“人们常说,男人工作养家,”人力资源负责人海伦·萨瓦拉(Hellen Savala)说,“但女人工作的话,她不仅养活自己家,也会帮助更大的家庭。这样的话,你就会拥有更大的影响力。”“不可能成功”这种平衡不仅只存在于入门级工作中间。在旧金山的Mission District,在比肯尼亚办公室小很多的办公室里,Samasource的首席执行官蕾拉·焦纳赫(Leila Janah)谈及如何让公司管理层女性占大多数时莞尔一笑。她说:“在硅谷,尤其是在人工智能领域,这样的情况实属罕见。但我们认为这没什么特别的。这也是一种竞争优势。”蕾拉·焦纳赫(右)Samasource成立于2008年。公司早期并不受待见。在美国经济衰退期间,大量向发展中国家外包工作并不受人欢迎,可以说现在仍不受欢迎。而那些发自内心欣赏公司理念的人则又担心的是,发展中国家的工人缺乏必需的数字技能,担心他们的工作达不到科技巨头们愿意接受的标准。“科技圈里和慈善界的有识之士都说这是一个非常好的想法,但是它不可能成功,”焦纳赫回忆说。今天,Samasource是东非同类型组织中最大,同时在亚洲和北美均设有机构。廉价劳动力焦纳赫自豪地表示,公司在准确性和安全性方面的记录,是赢得谷歌等大公司合同的重要因素。但毫无疑问,这些公司愿意与Samasource合作的另一个明显动机是,这里有全球最廉价的劳动力,并且当地人迫切需要稳定的工作。Samasource希望帮助的目标是,目前每天薪酬低于或刚达2美元,并且还是从事所谓的“怪异”地下经济或危险职业的人。Samasource可以提供每天约9美元的薪酬。这对当地人来说已经是了不得的飞跃,虽然跟硅谷相比仍微不足道。吉迪恩·恩尼欧向学生传授个人计算机的基础使用知识。“确实,它有很高的成本效益,”焦纳赫说,“但我们工作中的一个关键点在于,我们不会提供可能破坏当地劳动市场的薪酬水平。如果我们给出的薪酬过高,我们会给整个社会带来麻烦。比如,可能会对我们员工所生活的社区的住房成本、还有食物成本等带来潜在负面影响。”当然还有一个问题是,如果这种工作不再有需求会发生什么情况。Samasource的主要业务是为自动化系统提供数据。那么,如果创建数据的过程也能够自动化之后,会怎样呢?“这是一个关乎几十亿美元的科技问题,我相信每一个人心中多少都有类似担忧,”焦纳赫说,“我认为,在这个问题上,媒体有炒作过度之嫌。但你要是跟开发这些算法的数据科学家们深入交流后,你会发现机器远没有大多数人想象的那么智能。我们仍需要训练数据很长一段时间。”“这份工作改变了我的方方面面”数据训练专家其实是一项极其无聊的工作、充满了重复性、永没有尽头的任务。在镜头之外,有些员工会讨论如何面对快速工作以实现公司指标的压力,因而休息时间也大大减少。有些Samasource的工人现在虽然是自由职业者,可以在任何地方工作,但每当工作时都会一个网络摄像头监视他们的工作。伊德里斯·阿布迪(左)我们在办公室内看到的所有工人都没有得到任何适当的符合人体工程学的支持,经常伏在电脑前连续疯狂点击鼠标数小时——这对眼睛和身体都会造成一定压力。公司表示会考虑解决这个问题。对工作的抱怨在这个行业内并不少见,不过时常会得到快速的跟进和解决。Samasource表示,公司在发展中国家至少影响了近5万人;他们要么在Samasource工作,要么他们的家人在Samasource工作。根据公司对前员工进行的问卷调查,公司发现近84%的前员工会选择接受更正式的工作,或接受高等教育。其中一个从此走向成功的员工叫伊德里斯·阿布迪(Idris Abdi)。25岁的阿布迪在工作后,得以搬离贫民窟。“这份工作改变了我的……方方面面,”他说,“改变了我的认知,它让我看到未来的希望。”(小白)看到他们的,我们才知道我们的数据标注工作室比他们好多了。

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。