百度能否成为全球智能音箱第一大厂?

百度有一天在某硬件领域成为全球第一,这句话似乎听起来很离奇。如果说这个领域的直接对手,是亚马逊、谷歌、苹果等北美科技巨头,那几乎就更有点神乎其神了。

 

然而根据Canalys最新数据报告,在2019年Q2百度智能音箱出货量继续居于国内市场第一的前提下,已经超过谷歌攀升到了世界第二,前面只有亚马逊最早入场的智能音箱Echo,这个占尽天时地利的对手。 

 

要知道,从小度在家发布至今,百度做音箱仅仅经历了一年半的时间。从初入江湖到中国第一世界第二用了如此短的时间,百度智能音箱产品的全球市场份额,比一年前增长了令人“惊恐”的3700%。只能用惨无人道来形容的增长曲线,似乎正在确立百度硬件领域的生存与发展空间。

 

而毫无疑问,小度音箱的出货量能否大于亚马逊是一个关键指标,甚至将成为智能音箱发展史的拐点。另一方面,我们知道华为手机在成为世界出货量第一的路上,受到美国以国家力量干扰,至今没有完成。百度能否在音箱之路换道超车,自然也会引发国人强烈关注。

 

那么“音箱第一大厂”到底能不能换人?答案其实是由三个问题决定的。

 

 
 

路线之问:市场到底想要什么音箱?

 

用户对小度产品未来的好奇,归根结底在于小度攀升速度过快,大家会奇怪这种急速拉升究竟是一个可保持的长期趋势,还是短时间刺激效应下的虚假繁荣?

 

换句话说,小度究竟是走在正确的路上,还是仅仅踩了个幸运蘑菇?

 

这个问题必须交给智能音箱短暂但急促的发展史去回答。亚马逊Echo与谷歌Nest系列之间的关系,颇有点像天猫精灵与小度。只是中国市场相对更复杂,还要加上小米以及众多已经告别历史舞台的音箱产品。

 

 

如果说中美两开花,不,是两条线有什么共同特点,就在于“技术流”蚕食“电商流”是个必然趋势。谷歌凭借Assistant不断升级的语音交互能力,以及与安卓生态的关系,在亚马逊已经牢牢占据的智能音箱江山里杀了出来,做到今天北美市场快要分庭抗礼的程度。而国内音箱“三巨头”,小度起步最晚,却通过小度助手背后强大的技术能力,不断分割小米和阿里的市场份额,拓展智能音箱的市场边界。

 

不难看出,智能音箱落脚市场的关键还是智能技术。声音识别、唤醒、语义理解、多轮对话等能力构成了这个硬件值得被使用的基础。技术体验不流畅,可能直接造成打开率下降,影响市场购买率。这个硬卡位的存在,让电商体系与IoT体系带来的赋能相形见绌。

 

这个逻辑的最新论据在于,谷歌今年没有拿出什么能够引发极客们热情高涨、用户付出真金白银的技术,而是更多在产品的系列化以及周边设计上下功夫。无论我们将其看作调整周期还是谷歌的技术创新疲软,最终结果就是谷歌挑战亚马逊的步伐减慢,在全球范围内被百度完成了销量反超。

 

而与小度硬核崛起所同步的,恰好是底层技术创新。在不久前发布并已经搭载到小度音箱产品中的小度助手5.0,唤醒能力上加入了流式截断的多层注意力模型(SMLTA);在语义理解算法层融合了百度NLP的知识增强语义表示模型ERNIE,小度助手的核心理解算法升级为超大数据预训练深度模型,让众多NLP任务都有了新的表现;此外,全双工免唤醒能力的加入,让小度助手5.0有了人类之间对话时的“拒绝反应”,能够一次唤醒多次交互,让音箱主动分辨何时“不说”。

 

另一个值得注意的技术-产品关键问题,来自于带屏音箱新品类的市场认可。根据Canalys数据报告,在Q2小度全球音箱出货量中,有45%是带屏音箱。可见用户对这一新产品品类已经有了深刻接受度。而Canalys也指出,百度在带屏音箱中近乎于是没有竞争对手的。这条产品路径,正在成为小度的独属红利。

用户对于智能音箱体验的认可和需求,从来就没有降低过。换言之核心技术才是智能音箱的主要矛盾,从美国的谷歌生吃亚马逊,到中国的“千箱-三箱-小度超级箱”之路,都可以佐证市场核心逻辑的所在位置。

 

那么回到最初的答案,持续保持底层技术创新的百度,与长时间缺乏底层AI技术创新的亚马逊,处在一个努力奔跑,一个缓慢散步的进程里。百度反超,是存在战略上可能性的。

 

那么从战略到战术,关键问题在哪呢?

 

 
 

大妈之问:中国市场到底有多大?

 

通过底层技术创新,拉动技能开发生态和内容平台,这样的模式让国内智能音箱市场快速从三强争霸变成了一超两强。在小米和阿里近期无力概念技术和生态格局的条件下,这个局面今天来看应该会一直持续下去。

 

但是百度能否挑战世界第一的位置,很大程度上并不取决于国内竞争。因为现在中美音箱是你卖你的我卖我的,大家没事不串门。所以销量规模上的比拼,源自于各自市场容量的边界。换句话说,百度到底能把中国市场做到多大,是否能让中国市场音箱保有量超过美国,这个才是问题关键。

 

毫无疑问,中国市场上的智能音箱,正在享受互联网模式下的人口红利。根据Canalys预测,今年中国内地智能音箱数量将同比增长166%,效率冠绝全球,是美国46%增速的三倍。

 

这样的市场增速来源是多方面的,首先中国市场智能音箱的性价比依旧重要,这让智能音箱在中国市场基本属于无门槛消费。再者随着小度等音箱不断完善能力和内容,音箱的受众范围得到不断推广,家庭市场、教育市场在不断深化。

 

 

但真正决定中国市场销量边界的,其实是下沉市场的打开效率。几个月之前,我采访过烟台农村的一位大姐,她告诉我她家有一台小度在家,两台小度音箱(无屏版)。而这样的配置在她们村并不少见。可以直接对话,调出音乐、内容,以及应用的智能音箱,正在与中国广袤的黄土地毫不违和地沾粘在一起。

 

在理解智能音箱下沉市场的边界有多大时候,必须正视今天这样几个现状:

 

1、智能音箱抢占的是谁的市场?在具有长时间内容收听能力的市场里,不是一种音箱打败另一种音箱,而是这种智能交互模式+内容通道,收割收音机、低音炮、电视,甚至手机的存在时间。音箱体验的简便性,会从下沉市场首先发酵。

 

2、互联网服务增值模式与音箱之间的联系,构成了很多内容、电商、教育可以围绕音箱打开。这些内容在大都市可能很自然通过手机获取,音箱更多属于垂直人群,但在下沉市场,手机性能并不强,反而是便宜的音箱更可能成为入口。因此音箱的人均普及价值可以很快超越手机。

 

3、下沉市场的增长法则相对明确,大覆盖面广告效果明显。在春晚植入和热播综艺的普及下,如今用户已经对智能音箱产生心理预期和理解能力,市场教育周期已经基本完成。

 

在这三个条件下,智能音箱的市场边界还远远没有达到顶点。小度贯穿一线城市到乡村的销售覆盖网络,则强化了小度的市场打开通道。

 

如果继续保持目前的增长速度,小度基于中国市场的穿透力,销量超越亚马逊将不需要太长时间。无论国外媒体感觉多么不可思议,中国大妈说,这事是我们罩的。

 

 
 

苹果之问:去往海外的音箱如何生存?

 

再向更远处看,中美智能音箱的冠军,必然在世界范围内还有一战。但这场战斗发生在哪大有学问。

 

事实证明,美国音箱想在中国存活近乎不可能;看川普推特里的小情绪,中国音箱想进美国大概短期也不现实。

 

到2019年年底,全世界智能音箱预计可以达成2亿台的安装量,其中中国6000万,美国9000万。那么也就是说,全球还有四分之一非中非美市场。

 

根据Canalys的数据,这些市场份额里,目前对智能音箱接受度最好的是日本和韩国。在Q2这两个市场分别达成了131%和132%的增速,仅次于中国名列二三。

 

必须注意的是,这两大市场使用的语言既不是英语也不是汉语。所以从AI巨头输入产品解决方案时,这些市场需要的是多轮对话、语义理解、NLP的底层能力。

 

亚马逊和百度,谁能在这全球四分之一的市场里占领未来呢?这个远距离推测很可能给人不公允的感觉。但不妨来看一下,已经在中国卖了大半年的苹果智能音箱,是怎么失败的。事实上,苹果的HomePod基本可以判断为一款失败的产品,只不过是北美小败其他市场大败而已。4月,苹果不得已宣布HomePod永久降价50美元,可见其失利幅度之大。

 

苹果的音箱之痛,可以总结为三个问题:智能交互太差,尤其是非英语体验极其不好;昂贵的定价在其他智能音箱玩家面前没有任何竞争力,反而有浓厚的智商税嫌疑;应用体系,内容服务和IoT生态都没有,消费者不知道买来干什么。

 

苹果的问题,没有哪家企业敢不吸取。于是我们可以看到,音箱出海,脱离了本身市场的知名度和品牌能力之后,真正比拼的是三点:技术能力、定价能力、生态服务。

 

回到百度和亚马逊未来可能的出海对决中,今天底层技术的创新百度已经领先于业界,语音智能相关的底层算法幅度,更是从今年开始领先了AI老大哥谷歌,这是前所未见的。

 

而定价能力上,更靠近中国完善产业链的百度,显然不会拿出贵到离谱的产品走向世界。反而因为音箱品类的集成度有效,净值又不高,北美巨头很难在代工模式中发挥手机和平板的成本控制能力,很可能在直接与中国品牌的碰撞中陷入尴尬。

 

那么最后在生态服务能力上,百度与亚马逊如果真的展开较量,那就将是亚马逊依然强劲的世界电商网络能力,与百度代表的中国互联网服务模式的缠斗。这其中需要发挥中国互联网公司源源不断的运营和服务创新能力,可能要经历一场群狼搏虎的战斗。

 

虽然这个类比并不意味着真正的未来,但是2比1,是绝对能够说明某种态势的。而且出海之战,百度真正迎战谷歌或者亚马逊的时候,大概率小度已经是全球第一大音箱厂商了。

 

无人机,到手机,再到音箱,世界第一并不只是个名号,还是中国科技产业不容放弃的话语权。当百度成为世界音箱一哥的同时,也是下个时代的大门被悄悄推开的时候。

推荐文章

来自工业界的最佳实践。车牌识别是一个老生常谈的话题,在工业界已经得到广泛应用。当深度学习在各种视觉识别任务上刷新更高精度的时候,却常常被认为计算量远大于传统方法。Intel公司俄罗斯IOTG计算机视觉组的工程师最近发布了一篇论文,揭示了自家已经商用的车牌识别算法,使用轻量级深度神经网络进行车牌识别,达到快准狠的新高度,即速度超快、精度超准、硬件利用率超狠。本文来自于论文《LPRNet: License Plate Recognition via Deep Neural Networks》。文章的的第一作者已经离开Intel,这篇论文是他们17年的工作,通过Linkedin得知,两位作者来自Intel收购的Itseez公司,也就是之前维护OpenCV的俄罗斯公司。该文提出了LPRNet – 自动车牌识别的end-to-end方法,识别之前无需进行初步的字符分割。该方法使用了深度神经网络,能够实时运算,在中国车牌识别准确度上高达95%,速度上在nVIDIA GeForce GTX 1080显卡运算每个车牌3ms,在英特尔酷睿i7-6700K上每个车牌1.3ms。LPRNet由轻量级卷积神经网络组成,因此可以端到端的方式进行训练。论文称,LPRNet是第一个不使用RNN的实时车牌识别系统。因为速度快,LPRNet算法可用于自动车牌识别的嵌入式解决方案,即使在具有挑战性的中国车牌上也具有高精度。需要说明的是,LPRNet解决的是识别的问题,文中车牌检测使用的是LBP-cascade。LPRNet特性1.实时、高精度、支持车牌字符变长、无需字符分割、对不同国家支持从零开始end-to-end的训练;2.第一个不需要使用RNN的足够轻量级的网络,可以运行在各种平台,包括嵌入式设备;3.鲁棒,LPRNet已经应用于真实的交通监控场景,事实证明它可以鲁棒地应对各种困难情况,包括透视变换、镜头畸变带来的成像失真、强光、视点变换等。车牌识别的挑战图像模糊、很差的光线条件、车牌数字的变化(比如中国和日本的车牌有一些特殊字符)、车牌变形、天气影响(比如雨雪天气)、车牌上的字符个数有变化。空间变换预处理LocNet这是对检测到的车牌形状上的校正,使用 Spatial Transformer Layer[1],这一步是可选的,但用上可以使得图像更好得被识别。LPRNet的基础构建模块LPRNet的基础网络构建模块受启发于SqueezeNet Fire Blocks[2]和Inception Blocks[3],如下图所示。特征提取骨干网架构骨干网将原始的RGB图像作为输入,计算得到空间分布的丰富特征。为了利用局部字符的上下文信息,该文使用了宽卷积(1×13 kernel)而没有使用LSTM-based RNN。骨干网络最终的输出,可以被认为是一系列字符的概率,其长度对应于输入图像像素宽度。由于解码器的输出与目标字符序列长度不同,训练的时候使用了CTC Loss[4],它可以很好的应对不需要字符分割和对齐的end-to-end训练。为了进一步提高性能,使用了论文[5]中global context嵌入。推理阶段对上述一系列字符的概率进行解码,使用beam search[6],它可以最大化输出序列的总概率。后过滤(post-filtering)阶段,使用面向任务的语言模型实现作为目标国家车牌模板的一组集合,后过滤阶段是和beam search 结合一起用的,获得通过beam search找到的前N个最可能序列,返回与预定义模板集合最匹配的第一个序列,该模板取决于特定国家的车牌规则。识别实验结果训练时,使用一个来自监控场景的中国车牌的私有库,总共有11696幅经过LBP级联检测器检测出来的车牌,并进行了数据增广(data augmentation)即随机旋转、平移、缩放,下图报告了上述各种tricks对识别精度的影响。最大的识别精度增益来自于global context(36%),其次是data augmentation(28.6%),STN-based alignment即预处理也带来了显著提高(2.8-5.2%),Beam Search联合post-filtering进一步提高了0.4-0.6%.识别速度Intel将LPRNet在CPUGPUFPGA上都进行了实现,每个车牌的识别时间如下:这里GPU用的是nVIDIA GeForce1080, CPU是Core i7-6700K SkyLake, FPGA是Intel Arria10,推断引擎IE来自Intel OpenVINO.虽然这篇文章本身没有什么新的发明,但52CV还是认为非常值得推荐给大家的,它绝不属于水文,因为Intel已经将其商用了,足以证明它的优势和价值。该文没有开源代码,论文地址:https://arxiv.org/abs/1806.10447v1在“我爱计算机视觉”公众号后台回复“lprnet”可以直接获取论文的百度网盘下载地址。参考文献[1]“Spatial Transformer Networks,”arXiv:1506.02025[2]“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5mb model size,”arXiv:1602.07360[3]“Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” arXiv:1602.07261[4]Connectionist temporal classification:labelling unsegmented sequence data with recurrent neural networks. ICML 2006:369-376[5]“ParseNet: Looking Wider to See Better,” arXiv:1506.04579[6]Supervised Sequence Labelling with Recurrent Neural Networks, 2012th ed. Heidelberg ; New York:Springer, Feb. 2012.转载来源:《快准狠!Intel论文揭示自家车牌识别算法:LPRNet》

热门文章

波士顿 - Neurala公司今天推出了一款新的视频标注工具,该工具由Brain Builder平台的人工智能辅助。“自动视频注释将显着加速神经网络的数据标注,从而帮助组织更快地培训和部署AI,”该公司表示。标记图像和视频对于开发用于建模和训练AI应用程序的数据集至关重要。Neurala  以软件即服务(SaaS)为基础提供Brain Builder,以帮助简化深度学习的创建,分析和管理。Neurala的联合创始人兼首席执行官Massimiliano Versace说:“人工智能数据准备的传统方法极其耗时且耗费人力,需要大量数据,需要经过精心和昂贵的注释。” “我们与Brain Builder的目标是通过易于使用的注释工具降低进入门槛。通过添加视频注释,我们能够进一步自动化数据准备,帮助组织将AI数据准备的时间和成本降低至少50%。“Neurala的专利和获奖技术源于2006年NASA,DARPA和空军研究实验室的神经网络研究。2013年,该公司加入了Techstars商业化计划。“每个人都想要AI,但他们不知道为什么,”Neurala的联合创始人兼首席运营官Heather Ames Versace说。“视频注释工具是终身AI技术堆栈的一部分,可提供透明度。”启用AI的注释可节省时间,提高工作效率当用户标记视频中的人物,物体或缺陷时,Neurala的新工具可以反复学习。Neurala表示,在用户在第一帧中标记感兴趣的项目后,该工具会自动在后续帧中注释相同的项目。例如,如果五个人输入一个框架,则在用户仅用一个人标记第一个框架后,它们将全部自动注释。相比之下,用户必须在他或她进入框架时标记每个人,这将花费更多的时间。此外,AI辅助视频注释可以提高标签处理速度并提高生产力,Heather Ames Versace告诉“ 机器人商业评论”。例如,用户可以注释10秒视频的一帧并获得300个注释的输出,而使用传统的注释方法,用户需要手动标记300个不同的图像才能获得相同的结果,Neurala说。“可解释性和信任始于数据,”Heather Ames Versace在最近的AI World大会上说。“通过在更短的时间内对数据进行注释和标记,团队可以进行更快速的原型设计。”用Brain Builder存钱“最终,它将帮助组织和开发人员更有效,更具成本效益地构建,培训和部署人工智能,”Massimiliano Versace说。“当涉及视觉AI的构建方式时,Neurala的Brain Builder平台已经在改变游戏规则。而现在,视频注释将进一步扩大可访问性和生产力的可能性。“Neurala说,Brain Builder还可以提供可观的投资回报。使用Brain Builder,组织可以以每小时6,750美元的视频进行注释,而没有它的则为13,500美元。Neurala发布  了一个教程  ,概述了使用Brain Builder在视频中标记对象的过程和好处。它还解释了如何使用TensorFlow训练语义分段网络。此外,本教程还引导观众了解跨多个GPU的培训步骤,这可以进一步缩短培训时间。