明略数据是谁?为何能拿下腾讯在行业AI的高额投资

明略数据,究竟是一家什么样的公司?

昨天,这个低调的AI独角兽官宣了一轮已于去年完成的10亿元融资,C轮,华兴新经济基金和腾讯领投。更早之前,红杉资本中国基金是明略数据B轮的领投方。

值得注意的是,这则简短融资消息背后,也隐含着巨头们对潮水方向的判断。

Why?

有两个人最适合回答该问题。一是腾讯投资董事总经理姚磊文(Levin Yao),他是腾讯投资在AI赛道上的“捕手”,也是腾讯投资明略的直接负责人。

二是明略数据创始人及董事长吴明辉,他是明略的掌舵者,也是最先感知春江水暖的行业先锋,实际上这也是吴明辉的二次创业,在明略之前,他发起创办了营销领域声名卓著的“秒针”。

So,开门见山,围绕本次风向标式的投资,量子位请他们分享下对行业AI、未来趋势和明略发展的看法。

腾讯的逻辑

姚磊文(Levin Yao),一个逻辑清晰、言语简练的投资人。在被问到此次投资的背后逻辑时,这位腾讯投资董事总经理径直以“3个3”回答。

第一个“3”,行业趋势,姚磊文表示在AI加持下,大数据和云计算意义被重估,价值也在得到史无前例地释放。

之前马化腾有金句:在云端利用AI处理大数据。

而姚磊文则对此有更具体的解释:

首先,大数据正在给各行各业带来效率提升的机会,这是大趋势;

其次,支撑这个大趋势的核心原因,是数据的价值在云计算和AI作用下实现了价值放大,表现为线上线下数据开始有效打通,可以更加精准地识别用户需求,给用户带来更好的服务和价值;

第三,越来越多的智能传感器,又在进一步完善数据规模和维度,伴随数据联网化、分析能力等技术提升,数据价值倍数级放大。

于是在很多垂直应用场景,比如金融、工业、安防等,AI带动的数据价值提升,带来了更大的势能作用。

第二个“3”,是在趋势和时间节点踩准的前提下,AI落地的3个重要维度。

首先是选到一个有海量数据的领域切入,以明略为例,最先迈入的公安安防领域,破案和反恐,都是涉及海量、多源,且数据动态更新的领域;

其次是刚需明显。社会各界对安防领域一直都有巨大投入,不仅商业上有价值,还有积极的社会价值,是一个极富潜力的价值创造领域;

最后是固有解决方案有缺陷。传统大数据服务提供商,在现有AI解决方案上留有空间,后入的创新者机会很好。

所以从这3个维度来看,明略目前选择的公安、金融和工业,都有很明显的结构性机会。腾讯在这个方向上综合考察多家公司后,认定明略会是战略和财务上都能有优质回报的标的。

姚磊文强调说,腾讯挑选投资标的非常谨慎,原则就是:选最好的公司,给最多的支持,让它快速成为赛道领头羊。

新美大、京东、滴滴和链家等,都是腾讯投资原则下诞生的优秀成绩单。

但对于明略这样的行业AI公司,也不是不存在挑战。

依然是3点。

第一,数据本身体量大,维度多元,数据治理原本就是一个很大的工作,需要一个标准化流程,将非结构化数据变成结构化数据,这其中涉及对技术和行业的深刻理解。很多情况下,可能会面临数据很多,但不可用,数据孤岛是行业AI的瓶颈之一。

第二,当前AI技术发展尚处于初期,可以提供的价值创造有限度,无论是视觉、语音,还是自然语言理解,都还有待技术实现更大突破。

第三,AI to B,就会涉及到B端客户的认知度,特别是对于政企,需要时间和接受过程,明略等行业AI的早期投入企业,一方面有技术落地的硬性需求,另一方面也有市场教育和认知普及的潜在任务。

“挑战有,然而都能在不远将来得到解决。” 腾讯投资董事总经理姚磊文总结道。

明略的AI

OK,趋势和行业逻辑已经很明确,但明略到底做的是什么的?

不妨先看一个直观的例子。

2017年,明略正式对外发布了用于公安研判的AI人机交互产品“小明”,并正式在一些省市公安机关入职上岗。

“小明”可以干什么?

他不仅能把潜在犯罪嫌疑人的历史图谱分析清楚,而且还能结合时间、地点和其他维度,最后为公安民警提供决策参考,可以说是民警的研判助理,但又因为具备AI的学习及计算分析能力,堪比富有经验的优秀老民警,甚至可以说是民警标配的“福尔摩斯”。

这差不多就是明略业务产品的缩影。选定一个行业,找到刚需痛点,基于大数据,结合AI在感知和认知方面的能力,给出行业性解决方案。

本质上是利用AI降低成本,提高效率。

而上述举例所说的“小明”,只是明略行业AI落地的人机交互产品。“小明”背后,还有基于知识图谱数据库产品“蜂巢”,以及AI大脑“明智系统”。

△明智系统产品体系

与火热的感知AI不同,明略要落地的,叫认知AI。

这套思路,3年前从公安安防开始,现在延伸拓展到金融、工业与物联网等行业中,选知识型劳动的现实痛点切入,提供AI解决方案,并以此营收。

这还只是开始,吴明辉说:这是一个前期投入大、起初方案打磨时间长,然而一旦开始合作,增长稳定,壁垒深厚,而且AI还会随着数据增长而巩固优势。

这位明略创始人还透露,如果保持每年2-3倍的增长速度,明略在1、2年后便会是一家盈利公司。

而这还未将认知AI可能到来的技术革新计算在内。

认知AI

北大AI实验室出身的吴明辉,将AI按照“感知AI”和“认知AI”划分。感知类于人的眼、耳、口等感官,认知则更偏大脑新皮层,其中有逻辑思考、想象力、语言能力、符号处理能力。

感知+认知,构成人类完整的智慧能力。

此前,伴随深度学习带来的突破,感知AI正在前所未见地变革行业,让万物有灵。

△明略数据创始人及董事长吴明辉

现在,吴明辉认为“连接点”已经出现,感知AI和认知AI,正在寻求更全面地对接。

吴明辉说,在公安安防的AI系统打造中,感知方面的智能摄像头、视频解析,正在与认知领域的知识图谱等对接,双方正在呈现出越来越强的合作连接趋势。

但吴明辉也强调,之前相互独立发展的二者,现在所处的发展阶段也不同。

他表示现在认知AI方面的进展,尚处于方兴未艾阶段——“相当于深度学习在2011年时所处的阶段。”

对于认知AI的发展,吴明辉也给出了3点看法,指需要分3步走。

第一步,实现数据在线,即腾讯姚磊文所说的数据网联化;

第二步,基于数据在线实现分析和挖掘;

最后,形成彻底的AI业务闭环,拥有完整的行业解决方案,从最直观的感知,到后端支撑的认知,完成完整闭环方案,且有源源不断的客户价值产生。

这也是目前明略40多个项目经理分布全国各地的原因,因为行业AI落地很难“拿来即用”。

所以当我们问“行业AI落地所需”时,吴明辉给出的答案是:AI产品经理——这也是他在明略内部的自我定位。

吴明辉说,目前需要的产品经理一样的角色,把AI技术能力和客户需求梳理打磨,完成闭环的业务产品。

他解释称,这是人工智能的第一性原理

最核心的环节是形成产品闭环,而且最重要的是这个闭环并非完全机器永动循环,而是打造用户体验良好的人机交互入口,让所有的客户源源不断参与到“数据标注”、模型训练中。

秉持这样的观点,实际也跟目前认知AI所面临的技术挑战相关。

在吴明辉看来,认知AI的终局就是一个无所不会的“问答系统”。

无论用户、客户用什么样的语言、表达方式,这个问答系统都能准确理解、准确回答。

然而以一线从业者身份发言,吴明辉觉得这个终局还“路漫漫其修远兮”,因为即便明略的AI产品现在就已经在发挥作用,但核心还回答不了“why”的问题。

“你问AI,这个嫌疑犯为什么犯罪?它现在只能是懵的,不可能直接回答你。”

但AI可以做的是帮你找到犯罪相关的线索、情报,并且提供一些基于数据的分析。吴明辉认为行业AI落地可以从这样的方式打开局面,更何况这也已经是很多深具经验的老刑警才能完成的工作。

值得一提的是,这也是吴明辉认为行业AI将会带来的新常态。

AI带来的并非是工作的冲击,而是人类的进一步解放。

一方面是把人类从枯燥重复的脑力劳动中解放出来;另一方面则是做哪些人很难搞定的任务,最终让更多人投身更加有价值的工作中。

沿着这个使命,以及围绕知识型劳动的AI打造逻辑,明略还会进军更多领域,还会选择“做重模式”,派驻大量科学家、技术人员在客户现场,通过构建行业知识图谱,实现从个体赋能到全局智能的产业转型升级。

吴明辉说小目标,就是巩固明略面向AI的数据融合、治理能力在业内的江湖地位。

而为了实现这一小目标,这位明略公司“首席产品经理”,也花大量精力在人才招募和前沿技术研究,这也是吴明辉兼顾天使投资的原因之一。

我问他成为AI产品经理的建议,他笑而不语,最后半真半假地说:“这是明略数据的核心秘笈,我不能公开,但欢迎有识之士尽管来试试。”

明略数据营销副总裁透露,吴明辉从2006年正式创业,北大结缘的师兄弟们,几乎都不曾离开过。

如今,刚刚庆祝四周年生日的明略数据,已有400多位员工。


关于明略是谁,这个问题,吴明辉说, “你的价值观是什么,决定了你是谁,明略开始的第一天就是客户第一,员工第二,股东第三。”


本文来自搜狐新闻


推荐文章

“从深度学习到AI产品的广泛应用,我们正在走入新一轮的效率革命。那么问题来了,我们应该如何在波涛汹涌的AI浪潮中站在数据标注行业的前沿,而不是被大浪所吞噬而衰退呢?” 我们就具体如何做进行几点浅谈。准确判断数据标注需求公司的的需求方向市场需求在现实中是瞬息万变的,有在研发层面需要快速进行产品迭代的AI公司;有在应用层面需要大批量数据进行机器学习的AI公司。我们能够准确的把握此类公司的需求其实是最重要的一点。针对不同类型的公司所面临的具体需求如下所述:1. 快速研发提供第三方服务的AI公司他们对数据标注要求的结果就是反馈快、提交快、质量准确。因为在这个AI公司如雨后春笋般崛起的时代,研发产品的速度基本就等同于AI公司的核心竞争力。对于这类公司,数据标注公司能够做到反馈够快、沟通简洁、提交数据够快,就可以拥有行业竞争力。2.应用层面需要大批量数据进行机器学习的AI公司他们对数据标注的要求就是团队稳定,标注质量稳定,有能匹配其数据量的标注规模。对于这类公司,数据标注公司能够做到自身团队稳定,有一定规模,标注质量稳定,就可以拥有行业竞争力。精准定位数据标注需求公司的拓展范围通过阅读“如何运营一家数据标注公司(资源特点篇)”我们可以清楚的知道,目前标注市场上需求公司的种类,以及这些需求公司各自的特点。那么我们这里要详细介绍的是我们可以用什么样的方法找到数据标注需求公司,以及这些方法所存在的优劣势。1.实地拜访这要求我们脑海中需要有一个大概的走访范围。就融资的分布与创业企业的注册地址来说,北京、上海、广州、深圳、杭州。这5个城市包含的创新型企业最多,其中不乏众多人工智能企业。如果我们要从实地拜访出发,我们首先就要对上述几个重点城市的科技园、创业园等分布进行仔细的分析了解,做到有的放矢。优点  可以快速的与需求公司建立起来彼此联系,而合作关系一旦建立,此类关系相对稳定。同时,实地拜访也有利于数据标注公司更直观的感受到合作方的规模,可以给予数据标注公司在是否能够进行长期合作这个问题上提供有效参考。缺点  联系成本高昂,因为AI公司的地域特性,导致在联系相关公司期间的差旅费是一比不小的支出。同时BD要求专业化程度较高,这里的专业化主要指与数据标注需求公司面对面对接的人需要有较强的逻辑处理能力,在进行沟通的时候,除了数据标注公司自身工作流程的详细介绍之外,还需要针对客户的不同需求提供不同的解决方案2.电话走访和实地拜访的范围一样,电话走访我们首先需要一个范围。从什么地方获取数据标注需求公司的联系方式?这个仁者见仁,智者见智。在互联网高度发达的今天,信息已经无处遁行,只要我们多留意相关AI的版块,新闻,我们就可以通过其中获取的信息找到对应的公司。优点  联系成本低,可以进行普遍的撒网,尤其是在这个AI语音智能化的时代,电话的沟通效率和沟通质量可以成倍的增长。缺点  通常数据标注需求公司的电话对接人变动性较强(今天接电话是张三,明天有可能就是李四),这种情况的频繁发生就会让我们前期所希望的回访变成了一句空话,因为换一个电话对接人,其实所有工作就等于重头开始。3.参与会议随着AI浪潮的涌现,以及国家决策层面将人工智能列为国家未来的战略性技术,由各类单位牵头举办的大小会议也如疾风骤雨般扑面而来,下面我就对各种会议进行一个介绍,方便大家了解。 

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。