怎样才能做好数据标注?怎样做数据标注项目?

timg (3).jpg

        随着数据标注行业的快速发展,从事数据标注行业的人员越来越多,而对与刚开始或者 即将从事数据标注的人来说

怎样才能做好数据标注?怎样做数据标注项目?这个问题确实很令人困惑。


        那么到底怎么才能做好数据标注?怎样做数据标注呢?下面就结全我们点我科技几年的经历来给大家分析下:

        一、行业态度

                许多从事数据标注的工作室公司往往认为数据标注门槛低简单好做,正是他们的这种心理造就了他们对待标注

项目不认真,标注规则不仔细看,不认真消化理解标注要点,质量规则。

        二、低价竞争

                目前很多工作室公司他们往往为了拿到标注项目要么我别的公司低价竞争,要么是接受别的公司低价的项目,这

样也造成了这些公司对待项目首先考虑的员工效率,项目赚钱而很少去严格要求标注质量,严格按照标准的项目流程来做。

        三、项目转包

                有些公司拿到的项目往往是二手三手的项目,他们的利润已经被上级承包方层层拿走了,到他们手里已经利润非

常微薄,要保证项目的进行只有提高员工效率,质检走于形式。

        四、项目规则文档不够重视

                我们接触好很多公司团队结合他们出现的种种问题,发现他们项目质量差最大的问题就是从管理人员到标注员工

到质检人员再对待项目标注规则质检规则项目要求文档极不认真,有很多团队发给他们的项目规则文档就是一张纸就不去

看,或者走马观花式的过一遍,他们对待项目规则的理解都 是基于他们遇到问题让项目方给答复或者是项目负责人直接

会给他们讲哪些重点的东西,但是项目细则很多团队都没有去认真阅读,没认真消化理解,有很多问题都是项目绝对禁止

的也会经常出现。试想这种团队他们怎么能把项目质量做好,怎么能做到质检过关,怎么能做到不返工呢,他们怎么能不浪

费时间人力呢?

        五、好的数据标注工具软件也是提高标注项目质量必不可少的。

        六、严格的数据标注项目评估,质量管控,质检流程

timg (8).jpg

                很多标注团队质量做的差都是没有严格按照标注的质量要求,质检规则来操作。

        结合上术这些问题,我们认为数据标注项目想要做好确实不难,难的是对待项目的态度,对项目规则文件的认真仔细

阅读以及对项目要求的消化理解。总得来说要想做好数据标注项目,只要能态度端正,只要仔细认真阅读并理解项目规则,

只要站在项目方的角度考虑下,任何数据标注项目都是能做好并得到项目方的认可的。


推荐文章

数据标注员成就了今天的人工智能,为什么说AI对人类劳动力来说是个好消息盖蒂盖蒂人工智能(AI)在未来的工作中扮演什么角色?从目前的趋势来看,它将使企业更智能,流程更高效,体验更个性化,客户更满意 - 尽管这并不能阻止那些有先见之明的Cassandras做出更可怕的预测。为了听取他们的讲话,一个新的大师类天才机器将逐渐但不可避免地从一个接一个的职业取代人类,直到我们大多数人闲置和贫困。我相信现实并不是那么反乌托邦 - 但它可能同样具有变革性。这不是第一次将技术创新视为对人类劳动的至高无上或必要性的威胁。在缝纫机发明四十年后,第一家机器制衣厂被工人们害怕失去工作而被烧毁。当然,今天全球服装业雇佣了大约4000万人。同时,缝纫机的商业化使消费者能够更有效地制作和修补自己的衣服,有助于增加对织物的需求,扩大普通人的衣橱,并使以前辛苦的手动任务更快更简单地完成。恐惧是这些可怕预测的根源。人们担心机器会从人类中获取工作或者超越我们,从而彻底取代我们。我相信现实是,通过教这些机器来接管我们日常的日常任务,我们给予自己更多的自由和灵活性,在我们的领域保持领先,并为自己提供更多的个人和职业发展机会。缝纫机和人工智能系统之间存在明显差异,但在我看来,他们有朝一日都会证明反思恐惧和毫无根据的假设无法预测革命性技术的未来。也不是天上掉馅饼的幻想 - 我们还没有飞行喷气背包去工作或以药丸的形式吃饭。重要的是要清楚地了解人工智能跨行业的潜在好处,以了解如何最好地进行。让AI为我们工作,而不是相反AI是一种工具。从锤子到启发式分析引擎的任何工具都可以使其用户更加高效,高效和高效。人工智能系统可能会从人类的手(或大脑)中完成某些任务,但我相信它会使人类更有效,而不是更少的必要。例如,AI的一个主要用途是模式识别。在安全上下文中,这可能意味着发现IT环境中的异常活动或行为可能表示存在违规行为。如果没有人工智能,你需要投入更多的人工来发现这些异常现象,但你也会发现更少的异常情况,减少违规行为并减少故障中的漏洞。同时,该业务受到更多损害。这对员工来说最好吗?现在将AI和机器学习技术添加到安全团队的工具库中。利用这些工具在后台寻找异常和威胁 - 利用我们教过的技能 - 安全和IT专业人员可以专注于更全面的安全方法。特别是,通过使技术更加智能化,我们可以解决每个企业安全态势中最薄弱的环节:人的因素。更智能的系统创造了更简单,更安全的工作体验。智能数字工作区可以包含更少的登录步骤(因此人们不会想要在Post-Its上使用快捷方式或写密码),无需将白名单或黑名单应用列入白名单(这种做法与IT员工一样讨厌) ,允许通过公共网络的安全连接(对于那里的星巴克Wi-Fi战士)等等。AI也有助于提高生产力。一个 普华永道的一项研究 发现,到2030年,人工智能有可能将全球经济的生产力和GDP潜力提高26%。在安全的情况下,AI使团队的努力更加成功,而不会取消他们的工作。作为可能产生更大影响的二阶效应,它还可以通过提高人们工作方式的效率和灵活性,使整个员工队伍更加有效。当人们可以在更多场景中更轻松地工作时,他们可以为业务带来更大的价值,有助于刺激增长,从而实际上可以增加公司对劳动力的需求。从这个意义上说,人工智能不会取代人,它会使人们充满活力 - 这对整个组织都有好处。随着人工智能的补充和增强计算的人性因素,您可以在整个组织中看到这些战略优势。通过自动执行平凡的任务并消除错误,AI可以提高业务效率。通过从当今令人眼花缭乱的设备和连接矩阵产生的大量数据中获取洞察力,它可以帮助我们做出更明智的决策,为企业,工人和客户带来好处。通过帮助我们跟上数字化转型的闪电步伐,它可以让我们通过主动解决问题和智能策略来管理风险,以防止漏洞发生。在更高的层面上,我相信人工智能对解决目前困扰我们经济的巨大人才短缺至关重要。我们需要技术来减轻人类的平凡任务,因此我们可以专注于推动业务发展的更高层次的任务。对于竞争那里的人才的个别公司 - 特别是那些我们一直听到的千禧一代 - 智能工作场所技术对于赢得人才战争至关重要。人们越来越期望他们应该能够以他们想要的方式,他们想要的地点和时间工作。AI可以在不影响安全性的情况下提供灵活性,因此人们可以获得现代工作体验,帮助他们做最好的工作并拥有最好的职业。人工智能不会崛起并接管世界。它学习我们教它的内容 - 我们正在教它我们希望我们的未来工作看起来像:安全,灵活,高效和高效。

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。