什么是人工智能?很多人至今仍然不知道AI是什么

“具有执行感知功能(例如感知,学习,推理和解决问题)的能力的机器被认为拥有人工智能。当机器具有认知能力时,就会存在人工智能。 判断AI的基准是涉及推理、语音和视觉是否接近或达到人类水平。”


一、入门人工智能


弱AI(Narrow AI):当机器可以比人类更好地执行特定任务时。


通用AI(General AI):人工智能可以以与人类相同的精度水平执行任何智力任务时达到通用状态。


强AI(Strong AI):当AI在许多任务中都能击败人类时,它就是强AI。


如今,人工智能已在几乎所有行业中使用,为所有大规模集成人工智能的公司提供了技术优势。麦肯锡认为,与其他分析技术相比,人工智能有潜力创造6000亿美元的零售价值,为银行业带来50%的增量价值。在运输和物流领域,潜在收入增长了89%以上。


具体来说,如果企业将AI用于其营销团队,则可以使平凡而又重复性的任务自动化,从而使销售代表可以专注于诸如建立关系,培养领导等任务。企业可以使用AI分析和推荐来制定制胜战略。


简而言之,人工智能提供了一种尖端技术来处理人类无法处理的复杂数据。 AI将多余的工作自动化,使工人可以专注于高水平的增值任务。大规模实施AI可以降低成本并增加收入。


二、人工智能简史


如今,人工智能已成为流行语,尽管这个术语并不新鲜。 1956年,一群来自不同背景的前卫专家决定组织有关AI的夏季研究项目。 四个聪明的人领导了这个项目。 John McCarthy(达特茅斯学院),Marvin Minsky(哈佛大学),Nathaniel Rochester(IBM)和Claude Shannon(贝尔电话实验室)。该研究项目的主要目的是解决“原则上可以精确地描述出学习的每一个方面或智能的任何其他特征,从而可以制造出机器来对其进行仿真”。


这次会议的提议包括:


1)自动电脑


2)如何将计算机编程为使用某种语言?


3)神经元网


4)自我提升


这导致了可以创建智能计算机的想法。 充满希望的新时代开始了-人工智能


三、人工智能类型:

 


人工智能可以分为三个子领域:


1)人工智能


2)机器学习


3)深度学习


四、什么是机器学习?


机器学习是研究从示例和经验中学习的算法的艺术。机器学习基于这样的想法,即数据中存在一些已识别的模式,可用于将来的预测。与硬编程规则的区别在于,机器会自行学习以找到此类规则。


五、什么是深度学习?


深度学习是机器学习的一个子领域。深度学习并不意味着机器学习更多的深入知识;而是意味着机器使用不同的层从数据中学习。模型的深度由模型中的层数表示。例如,用于图像识别的Google LeNet模型有22层。在深度学习中,学习阶段是通过神经网络完成的。神经网络是一种结构,其中各层相互堆叠。


六、人工智能与机器学习


我们大多数的智能手机,日常设备甚至互联网都使用人工智能。想要宣布其最新创新的大公司通常会交替使用AI和机器学习。但是,机器学习和AI在某些方面有所不同。


AI(人工智能)是训练机器执行人类任务的科学。这个术语是在1950年代发明的,当时科学家开始研究计算机如何自行解决问题。


人工智能是一台具有类人特性的计算机。它可以轻松,无缝地计算我们周围的世界。人工智能是计算机可以执行相同操作的概念。可以说,人工智能是模仿人类能力的大型科学。


机器学习是AI的一个独特子集,它可以训练机器如何学习。机器学习模型会寻找数据中的模式,然后尝试得出结论。简而言之,无需人工对机器进行编程。程序员提供了一些示例,计算机将从这些示例中学习如何做。


七、AI都在哪里使用?


人工智能具有广泛的应用:


人工智能用于减少或避免重复任务。例如,AI可以连续重复任务,而不会感到疲劳。实际上,人工智能永远不会停止,对执行的任务无关紧要。


人工智能改善了现有产品。在机器学习时代之前,核心产品是建立在硬编程规则之上的。公司引入人工智能来增强产品的功能,而不是从头开始设计新产品。你可以想到一些社交平台的照片。几年前,你必须手动标记朋友。如今,在AI的帮助下,社交平台给你推荐朋友。


从市场营销到供应链,金融,食品加工等行业,人工智能被广泛应用。根据麦肯锡的一项调查,金融服务和高科技通信在AI领域处于领先地位。


八、为什么AI蓬勃发展?


自90年代以来,随着Yann LeCun的开创性论文出现了神经网络。但是,它在2012年左右开始变得出名。对其受欢迎程度的三个关键因素解释为:


1)硬件


2)数据


3)算法


机器学习是一个实验领域,这意味着它需要有数据来测试新的思想或方法。随着互联网的繁荣,数据变得更加易于访问。此外,像NVIDIA和AMD这样的大公司也为游戏市场开发了高性能的图形芯片。


1.硬件


在过去的二十年中,CPU的功能爆炸性增长,使用户可以在任何笔记本电脑上训练小型的深度学习模型。但是,要处理用于计算机视觉或深度学习的深度学习模型,你需要一台功能更强大的机器。多亏了NVIDIA和AMD的投资,新一代GPU(图形处理单元)才问世。这些芯片允许并行计算。这意味着机器可以在多个GPU上分离计算以加快计算速度。


例如,使用NVIDIA TITAN X,需要花两天的时间来为传统CPU训练数周的ImageNet模型。此外,大公司使用GPU集群通过NVIDIA Tesla K80训练深度学习模型,因为它有助于降低数据中心成本并提供更好的性能。


2.数据


深度学习是模型的结构,而数据则是使其活跃的基础。数据为人工智能提供动力。没有数据,什么也做不了。最新技术已经突破了数据存储的界限。在数据中心中存储大量数据比以往任何时候都更加容易。


互联网革命使数据收集和分发可用于馈送机器学习算法。如果你熟悉Instagram或其他任何带有图像的应用程序,则可以猜测它们的AI潜力。这些网站上有数以百万计的带有标签的照片。这些图片可用于训练神经网络模型以识别图片上的对象,而无需手动收集和标记数据。


人工智能与数据结合是新的黄金时代。数据是任何公司都不应忽视的独特竞争优势。 AI从你的数据中提供最佳答案。如果所有公司都可以使用相同的技术,那么拥有数据的公司将比其他公司具有竞争优势。举个例子,世界每天创造约2.2 EB,即22亿千兆字节。公司需要异常多样化的数据源,以便能够找到模式并进行大量学习。


3.算法


硬件比以往任何时候都更加强大,可以轻松访问数据,但是使神经网络更可靠的一件事是开发了更精确的算法。初级神经网络是没有深度统计特性的简单乘法矩阵。自2010年以来,在改善神经网络方面取得了令人瞩目的发现。人工智能使用渐进式学习算法来让数据进行编程。这意味着,计算机可以自学如何执行不同的任务,例如发现异常,成为聊天机器人。


九、总结


人工智能和机器学习是两个令人困惑的术语。人工智能是训练机器模仿或复制人类任务的科学。科学家可以使用不同的方法来训练机器。在AI时代的初期,程序员编写了硬编程的程序,即键入机器可以面对的每一种逻辑可能性以及如何响应。当系统变得复杂时,很难管理规则。为了克服这个问题,机器可以使用数据来学习如何处理给定环境中的所有情况。


拥有强大的AI的最重要功能是拥有足够多的数据,并且异构性强。例如,一台机器只要有足够的单词可以学习就可以学习不同的语言。AI是新的尖端技术。麦肯锡估计,人工智能可以以至少两位数的速度推动每个行业的发展。

来源(https://www.toutiao.com/a6769444053370012173/


推荐文章

新兴的数据标注行业遍布全球,全世界人都在为人工智能打工!
AI的新员工:数据标注行业遍及全球 在印度和菲律宾等低收入国家工作的数十万人 数据注释公司iMerit在印度加尔各答的办公室员工。随着公司越来越接受人工智能,新兴行业正在兴起,在该行业中,员工被用来“训练”算法以识别各种类型的数据 ,马达胡米塔·穆尔吉亚(Madhumita Murgia) JULY 24 2019 打印此页 26 在印度城市加尔各答的边缘,在拥挤不堪的梅蒂亚布鲁兹(Metiabruz)居民区,有460名年轻妇女在人工智能的先锋队伍中工作。 这些女性,主要来自当地的穆斯林社区,正在帮助培训诸如亚马逊,微软,eBay和TripAdvisor之类的自动驾驶汽车和增强现实系统中使用的计算机视觉算法。  全女性中心是由印度和美国的数据标注公司iMerit运营的八个印度办事处之一,其2200名本地员工为制造业,医学成像,自动驾驶,零售等行业产生的数据海洋贴上标签,保险和农业。 该业务是不断发展的数据标签行业的一部分,该行业在肯尼亚,印度和菲律宾等低收入国家雇用数十万名工人。 如图8和Mighty AI之类的公司,以及埃森哲和Wipro等更传统的IT公司,正在组成所谓的“ AI供应链”,该供应链创建的算法能够解释包括驾驶镜头,搜索结果和照片在内的资料。美国和欧洲最大的跨国公司,包括Facebook,大众汽车和Google。 如今,公司正在拥抱人工智能,将其作为自动化决策和帮助创造新商机的一种方式。挑战在于,支撑该技术的算法像新生事物一样幼稚。他们需要喂给他们数百万个带有标签的示例,以教会他们“看”。  内罗毕的旧金山数据标签供应商Samasource的工人©Fredrik Lerneryd / FT 若要教授自动驾驶汽车算法的路标含义,或分辨孩子和狐狸之间的区别,则必须逐帧观看数小时的镜头并标记物体。一个小时的视频需要八个小时才能注释。事实上,麦肯锡(McKinsey)在2018年发布的一份报告中将数据标签列为工业界采用AI的最大障碍。 根据分析公司Cognilytica于2019年1月发布的报告,第三方数据标签解决方案的市场在2018年为1.5亿美元,到2023年将增长到超过10亿美元。“最大的技术公司不愿与培训数据,他们希望拥有客户关系[并且]明智地使用合作伙伴和采购,”位于旧金山的数据标签供应商Samasource的创始人兼首席执行官Leila Janah说道,该公司在肯尼亚,乌干达和美国设有办事处。 “但这就是为什么围绕道德的AI供应链进行对话如此重要的原因。在它开始走出他们的四面墙之前,我们必须确保我们设定了标准,而且这个市场不会阻碍服装工厂的发展。有巨大的机会来确保这个(标签)行业是一个积极的力量。”  新员工 当大型跨国公司开始为消费产品开发机器学习算法时,数据标签要么通过亚马逊的Mechanical Turk之类的众包平台提供给零工,要么由低薪经济体的工人团队内部进行。萨拉·罗伯茨(Sarah T Roberts)等研究人员对像美国这样的国家的数十名科技工作者进行了采访,他们认为,与同公司的其他员工相比,这些承包商的工资通常被严重低估,而他们的工作却被视为卑鄙的。菲律宾的“屏幕背后”一书。 Samasource的创始人兼首席执行官Leila Janah©Fredrik Lerneryd / FT 随着需要贴标签的数据量呈指数级增长,大公司越来越多地转向第三方,这些第三方能够为专门提供特定类型数据(例如驾驶或医疗信息)的工人提供服务,并且他们也以道德的方式得到报酬和待遇。 Samasource的员工为沃尔玛,谷歌,微软,Glassdoor,大陆和通用汽车等公司提供数据标签,其总部位于内罗毕,拥有2800多名员工。“我们有一种劳动模式,雇用人们作为全职工人,并以生活工资支付福利。  平均而言,(当我们雇用他们时)我们的工人收入几乎翻了两番。”贾纳女士说。“我们与通常来自非正式定居点,乡村的人口一起工作,因此有机会获得一份高薪的工作,并为您提供计算机技能并使您接触AI,这意味着人们对此非常重视。” iMerit在加尔各答附近的全女性培训机构已成为计算机视觉标签的专业中心,该公司总体上雇用了50%的女性劳动力,其中大部分来自印度的低收入家庭。“这是一个不允许妇女出差去其他地方工作的社区。因此,我们开始为他们带来项目。” iMerit首席执行官Radha Basu说。 人为因素 人工智能供应链公司坚持认为,他们的工作不再涉及对猫,狗和房屋等基本物体的盲目,死记硬背的标签,而是已经演变成更加专业化的任务集。 例如,iMerit员工可能会分析驾驶员的车载录像,包括面部表情和眨眼,以确定驾驶员的疲劳程度;巴苏女士说,他们已经为亚马逊的Echo扬声器培训了语音剪辑,以理解语言并分析了单个建筑物和建筑工地的卫星图像,从而为保险公司培训了风险评估算法。 iMerit在加尔各答的工人 Samasource在Bayer的一个项目上工作,该项目要求注释植物的血管横截面以检测病害细胞以保护作物,并训练空中图像算法。Janah女士解释说:“我们希望专注于机器无法轻易掌握的复杂边缘情况,在这些情况下您需要人工来提供细微差别和判断力。那就是我们增加价值的地方。” 随着AI培训市场开始爆炸式增长,使用AI的西方团体正在寻求与具有社会影响力模型的更多道德外包公司合作。“人们第一次质疑那些不为AI供应链中的工人提供生活工资的[标签]公司。作为一家公司,如果您要让这些劳动者对您的数据进行培训,则应归功于他们对这些劳动者的公平对待,”贾纳女士说。 巴苏女士说:“从长远来看,这些年轻的农村部落工人将真正改变其社区的经济能力。西方来自谷歌

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。