接入支付宝芝麻信用分的使用场景说明

找标注网是数据标注业务外包分发平台,通过线上接入数据标注公司发布任务,为全职或兼职及残疾人工作室提供的接收任务工作的平台,

希望通过支付宝认证和芝麻分授权的方式,来有效证明分发任务商家的真实性和有效性.以防被小人利用.


使用场景举例:

北京一家人工智能数据标注公司需要大量人工采集四川话方言的录音,把这消息发到找标注网并留下了联系方式,这时远在四川成都的一个数据标注团队在找标注网上看到了这条信息,正好团队都是四川人,与他们的经验的资源相匹配,于是他们就想接下这个业务,


但毕竟是网上,没有接解过,不知道对方的真实性,也不知道这个信息的真实性,,万一是来骗劳动力的,干了活不给结算,为避免这种不诚信的各种情况产生,于是我们想到了支付宝认证和芝麻信用,如果接入了支付宝认证和芝麻分,就有了些有参考,再综合评估是否合作,大致就是这个使用场景,


请支付宝给予开通,为一些数据标注工作室,和残疾人团队减少上当受骗的可能,请支付宝能够支持,谢谢.



推荐文章

人工智能行业研究报告围涵盖AI基础技术及终端产品研究范围:人工智能是一门综合了计算机科学、生理学、哲学的交叉学科。凡是使用机器代替人类实现认知、识别、分析、决策等功能,均可认为使用了人工智能技术。作为一种基础技术,人工智能在很多行业都有用武之地。既有人工智能+基础行业的概念(如人工智能+金融=Fintech),也有其具体应用行业的概念(比如机器人)。按照技术应用的不同场景,可以将人工智能分为基础技术类及终端产品类,本报告研究范围涵盖以下领域:研究目的:本报告将集中探讨:„ 人工智能行业整体的发展现状与技术发展趋势„ 各细分领域投融资热度与技术成熟度„ 巨头在人工智能领域的布局与策略„ 各应用领域市场规模、竞争格局、进入壁垒、产业链上下游构成„ 行业标杆的商业模式、核心竞争力、未来发展预期目 录 Contents一、人工智能行业驱动力1. 行业驱动——数据量、运算力、算法技术2. 政策法规3. 投资热度国际投资热度分析国内投资热度分析国内公司运营数据分析二、人工智能产业链与巨头布局分析1. 产业链构成2. 巨头布局开源平台布局芯片布局技术布局一、人工智能行业概述三、人工智能基础应用介绍与典型公司分析1. 语音识别2. 语义识别3. 计算机视觉目 录 Contents五、人工智能在各行业的应用介绍与典型公司分析1. 机器人2. AI+金融3. AI+医疗4. AI+安防5. AI+家居六、人工智能芯片介绍与典型公司分析六、人工智能行业趋势展望1. 人工智能各行业综述2. 人工智能当前发展瓶颈四、人工智能芯片介绍与典型公司分析1. 人工智能芯片适用性分析GPUFPGAASIC2. 人工智能芯片产业链分析3. 人工智能芯片典型公司分析人工智能行业概述CHAPTER 1 • 行业驱动——数据量、运算力、算法技术• 政策法规• 投资热度国际投资热度分析国内投资热度分析国内公司运营数据分析636Kr-人工智能行业研究报告2017年2月数据量、运算力和算法模型是影响人工智能行业发展的三大要素。2000年之后,数据量的上涨、运算力的提升和深度学习算法的出现极大的促进了人工智能行业的发展。• 海量数据为人工智能发展提供燃料要理解数据量的重要性,得先从算法说起。数据量和算法可以分别比作人工智能的燃料和发动机。算法是计算机基于所训练的数据集归纳出的识别逻辑,好的算法模型可以实现精准的物体和场景识别。数据集的丰富性和大规模性对算法训练尤为重要。因此可以说,实现机器精准视觉识别的第一步,就是获取海量而优质的应用场景数据。以人脸识别为例,训练该算法模型的图片数据量至少应为百万级别。2000年以来,得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生并存储的数据量急剧增加,这为通过深度学习的方法来训练计算机视觉技术提供很好的土壤。IDC数据显示,从2011年起,全球所产生的数据量已达到ZB级别(1ZB约为10亿GB ),海量的数据将为计算机视觉算法模型提供远远不断的素材。而关于数据量对提高算法准确率方面的重要性,更有学者提出:“It’s not who has the best algorithm that wins. It’s who has the most data. ”行业驱动力 · 数据量海量数据为人工智能发展提供燃料大数据训练模型 应用于具体场景算法模型 场景应用01020304050来源:IDC,36氪研究院2020数据量与准确率之间的关系 2009-2020年全球总体数据量(单位:ZB)20090%10%20%30%40%50%60%70%80%90%100%100 200 300 400 500 600 700 800 900 1000测试字符数量Window Memory-BasedPerceptron Naïve Bayes说明:window、memory-based、perceptron、naive bayes 均为不同算法来源:Stanford机器学习公开课,36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析准确率736Kr-人工智能行业研究报告2017年2月人工智能领域是一个数据密集的领域,传统的数据处理技术难以满足高强度、大数据的处理需求。 AI芯片的出现让大规模的数据效率大大提升,加速了深层神经网络的训练迭代速度,极大的促进了人工智能行业的发展。AI算法的处理需要大量的矩阵计算操作,因此特别适合使用并行运算芯片进行数据处理。而传统的CPU一次只能同时做一两个加减法运算,无法满足并行运算的需求。目前,出现了GPU、NPU、FPGA和各种各样的AI-PU专用芯片。而其中, 出现最早的GPU为人工智能的发展做出了巨大的贡献。擅长并行计算的GPU大幅提升机器学习效率。在GPU出现之前,算法运行的速度是很慢的,即使是一个简单的神经网络数据的培训,也得花费几天、甚至几周的时间。 1999 年,Nvidia 公司在推销Geforce 256 芯片时,提出了GPU( 图像处理器) 概念。GPU是专为执行复杂的数学和集合计算而设计的数据处理芯片。它的出现让并行计算成为可能,对数据处理规模、数据运算速度带来了指数级的增长,极大的促进人工智能行业,尤其计算机视觉领域的发展。GPU与传统CPU相比,在处理海量数据方面有压倒性的优势。 据Rajat Raina 与吴恩达的合作论文 “用 GPU 进行大规模无监督深度学习” 显示,在运行大规模无监督深度学习模型时,使用 GPU 和使用传统双核 CPU 在运算速度上的差距最大会达到近七十倍。在一个四层,一亿个参数的深度学习网络上,使用 GPU 将程序运行时间从几周降低到一天。今天,数据处理速度不再成为制约计算机视觉发展的主要瓶颈。想要发挥专用芯片的计算优势,需要芯片结构和软件算法两者相匹配。目前的趋势是,随着对人工智能各类应用需求的不断增强,专门用于加速人工智能应用的AI-PU或将成为计算机另一个标配组件。行业驱动 · 运算力运算力的提升大幅推动人工智能发展世界上第一款GPU-GeForce 256 中科寒武纪即将投产的 “寒武纪”NPU Altera的高端FPGA 产品 Stratix 101.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析836Kr-人工智能行业研究报告2017年2月在深度学习出现之前,机器学习领域的主流是各种浅层学习算法,如神经网络的反响传播算法(BP算法)、支撑向量机(SVM)、Boosting、Logistic Regression等。这些算法的局限性在于对有限样本和计算单元的情况下对复杂函数的表示能力有限,对复杂数据的处理受到制约。以计算机视觉为例,作为一个数据复杂的领域,浅层学习算法的识别准确率并不高。该类识别原理多为通过寻找合适的特征来让机器辨识物品状态,由于这个处理逻辑是浅层的,不能穷举各种复杂的情境,因而算法拟合的准确率不高。深度学习突破人工智能算法瓶颈。2006年,Geoffrey Hinton 和合作者发表论文,“A fast algorithm for deep belief nets”,此后“Deep Learning(深度学习)”的概念被提出。以计算机视觉为例,深度学习出现之前,基于寻找合适的特征来让机器辨识物体状态的方式几乎代表了计算机视觉的全部。尽管对多层神经网络的探索已经存在,然而实践效果并不好。深度学习出现之后,计算机视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流。即,机器从海量数据库里自行归纳物体特征,然后按照该特征规律识别物体。图像识别的精准度也得到极大的提升,从70%+提升到95%。在短短几年时间里,深度学习颠覆了语音识别、语义理解、计算机视觉等基础应用领域的算法设计思路,逐渐形成了从一类训练数据出发,经过一个端到端的模型,直接输出最终结果的一种模式。由于深度学习是根据提供给它的大量的实际行为(训练数据集)来自我调整规则中的参数,进而调整规则,因此在和训练数据集类似的场景下,可以做出一些很准确的判断。行业驱动力 · 算法深度学习突破人工智能算法瓶颈72.00% 74.50%84.70%89.00%93.00% 95.00%60%70%80%90%100%2010 2011 2012 2013 2014 20152010-2015年 ImageNet 比赛图像识别准确率注释:ImageNet是计算机视觉系统识别项目。来源:36氪研究院过去 现在 未来Google translate语义识别准确率60%83.4% …注释:Google translate是语义识别项目。来源:36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析936Kr-人工智能行业研究报告2017年2月 • 其他国家人工智能相关政策各国均在政策层面强调和推动人工智能的发展。其中,美国侧重于研发新型脑研究技术;欧盟主攻以超级计算机技术来模拟脑功能;日本则聚焦以动物为模型研究各种脑功能和脑疾病的机理。政策法规 · 国外政策加码,人工智能发展如火如荼国家 相关措施美国• 2013 年4 月,美国正式公布“推进创新神经技术脑研究计划”(BRAIN)。得到政府拨款1.1 亿美元,覆盖美国国家卫生研究院(HIN)、国防部高级研究项目局、国家科学基金会。• 2014 年HIN 小组制定了未来十年详细计划,预计每年投入3-5 亿美元开发用于监测和映射大脑活动和结构的新工具,十年计划共花费45 亿美元。欧盟2013 年初,欧盟宣布了未来十年的“新兴旗舰技术项目”——人脑计划(HBP),该项目汇聚了来自24 个国家的112 家企业、研究所和高校等机构,总投资预计将达到12 亿欧元。计划在2018 年前开发出第一个具有意识和智能的人造大脑.日本2014 年9 月启动大脑研究计划Brain/MINDS。该计划为期10 年,由日本理化学研究所主导实施,旨在理解大脑如何工作以及通过建立动物模型,研究大脑神经回路技术,从而更好地诊断以及治疗大脑疾病。来源:36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析1036Kr-人工智能行业研究报告2017年2月 • 国内人工智能相关政策国内近几年也出台了相关扶植人工智能发展的政策,积极推动人工智能在各个细分领域的渗透。2016年5月,国家四部委更是颁布《 “互联网+”人工智能三年行动实施方案》,明确提出要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平。政策法规 · 国内政策加码,人工智能发展如火如荼实施时间 颁布主体 法律法规 相关内容2015.5 国务院 《中国制造2025》提出“加快发展智能制造装备和产品”,指出“组织研发具有深度感知、智慧决策、自动执行功能的高档数控机床、工业机器人、增材制造装备等智能制造装备以及智能化生产线,统筹布局和推动智能交通工具、智能工程机械、服务机器人、智能家电、智能照明电器、可穿戴设备等产品研发和产业化。”2015/7/4 国务院《国务院关于积极推进“互联网+”行动的指导意见》明确提出人工智能作为11个重点布局的领域之一,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用。2015/7/9 中央办公厅、国务院《关于加强社会治安防控体系建设的意见》加大公共安全视频监控覆盖,将社会治安防控信息化纳入智慧城市建设总体规划,加深大数据、云计算和智能传感等新技术的应用。2016.1 国务院 《“十三五”国家科技创新规划》智能制造和机器人成为“科技创新-2030 项目”重大工程之一。2016/3/18 国务院《国民经济和社会发展第十三个五年规划纲要(草案)》人工智能概念进入“十三五”重大工程。2016/5/18国家发展改革委、科技部、工业和信息化部、中央网信办 《“互联网+”人工智能三年行动实施方案》明确了要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平,并且政府将在资金、标准体系、知识产权、人才培养、国际合作、组织实施等方面进行保障。1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析1136Kr-人工智能行业研究报告2017年2月 • 融资规模与成立公司数量总览咨询公司Venture Scanner统计,截止2016年Q2,全球人工智能公司已突破1000家,跨越13个子门类,融资金额高达48亿美元。而人工智能创投金额在5年间增长了12倍。投资热度 · 全球全球AI领域融资金额5年增长12倍62 96 66 68 64 138 125 102 186 283 211 141 321 555 394 942 769 398 911 485 6361,04911211322 2038 37 38 43 50634770 77 84 809284120100134

热门文章

波士顿 - Neurala公司今天推出了一款新的视频标注工具,该工具由Brain Builder平台的人工智能辅助。“自动视频注释将显着加速神经网络的数据标注,从而帮助组织更快地培训和部署AI,”该公司表示。标记图像和视频对于开发用于建模和训练AI应用程序的数据集至关重要。Neurala  以软件即服务(SaaS)为基础提供Brain Builder,以帮助简化深度学习的创建,分析和管理。Neurala的联合创始人兼首席执行官Massimiliano Versace说:“人工智能数据准备的传统方法极其耗时且耗费人力,需要大量数据,需要经过精心和昂贵的注释。” “我们与Brain Builder的目标是通过易于使用的注释工具降低进入门槛。通过添加视频注释,我们能够进一步自动化数据准备,帮助组织将AI数据准备的时间和成本降低至少50%。“Neurala的专利和获奖技术源于2006年NASA,DARPA和空军研究实验室的神经网络研究。2013年,该公司加入了Techstars商业化计划。“每个人都想要AI,但他们不知道为什么,”Neurala的联合创始人兼首席运营官Heather Ames Versace说。“视频注释工具是终身AI技术堆栈的一部分,可提供透明度。”启用AI的注释可节省时间,提高工作效率当用户标记视频中的人物,物体或缺陷时,Neurala的新工具可以反复学习。Neurala表示,在用户在第一帧中标记感兴趣的项目后,该工具会自动在后续帧中注释相同的项目。例如,如果五个人输入一个框架,则在用户仅用一个人标记第一个框架后,它们将全部自动注释。相比之下,用户必须在他或她进入框架时标记每个人,这将花费更多的时间。此外,AI辅助视频注释可以提高标签处理速度并提高生产力,Heather Ames Versace告诉“ 机器人商业评论”。例如,用户可以注释10秒视频的一帧并获得300个注释的输出,而使用传统的注释方法,用户需要手动标记300个不同的图像才能获得相同的结果,Neurala说。“可解释性和信任始于数据,”Heather Ames Versace在最近的AI World大会上说。“通过在更短的时间内对数据进行注释和标记,团队可以进行更快速的原型设计。”用Brain Builder存钱“最终,它将帮助组织和开发人员更有效,更具成本效益地构建,培训和部署人工智能,”Massimiliano Versace说。“当涉及视觉AI的构建方式时,Neurala的Brain Builder平台已经在改变游戏规则。而现在,视频注释将进一步扩大可访问性和生产力的可能性。“Neurala说,Brain Builder还可以提供可观的投资回报。使用Brain Builder,组织可以以每小时6,750美元的视频进行注释,而没有它的则为13,500美元。Neurala发布  了一个教程  ,概述了使用Brain Builder在视频中标记对象的过程和好处。它还解释了如何使用TensorFlow训练语义分段网络。此外,本教程还引导观众了解跨多个GPU的培训步骤,这可以进一步缩短培训时间。