人工智能行业研究报告

人工智能行业研究报告

涵盖AI基础技术及终端产品

研究范围:

人工智能是一门综合了计算机科学、生理学、哲学的交叉学科。

是使用机器代替人类实现认知、识别、分析、决策等功能,均可认

为使用了人工智能技术。作为一种基础技术,人工智能在很多行业

都有用武之地。既有人工智能+基础行业的概念(如人工智能+金融

=Fintech),也有其具体应用行业的概念(比如机器人)

按照技术应用的不同场景,可以将人工智能分为基础技术类及终端

产品类,本报告研究范围涵盖以下领域:

研究目的:

本报告将集中探讨:

„ 人工智能行业整体的发展现状与技术发展趋势

„ 各细分领域投融资热度与技术成熟度

„ 巨头在人工智能领域的布局与策略

„ 各应用领域市场规模、竞争格局、进入壁垒、产业链上下游构成

„ 行业标杆的商业模式、核心竞争力、未来发展预期


目 录 Contents

一、人工智能行业驱动力

1. 行业驱动——数据量、运算力、算法技术

2. 政策法规

3. 投资热度

国际投资热度分析

国内投资热度分析

国内公司运营数据分析

二、人工智能产业链与巨头布局分析

1. 产业链构成

2. 巨头布局

开源平台布局

芯片布局

技术布局

一、人工智能行业概述

三、人工智能基础应用介绍与典型公司分析

1. 语音识别

2. 语义识别

3. 计算机视觉目 录 Contents

五、人工智能在各行业的应用介绍与典型公司分析

1. 机器人

2. AI+金融

3. AI+医疗

4. AI+安防

5. AI+家居

六、人工智能芯片介绍与典型公司分析

六、人工智能行业趋势展望

1. 人工智能各行业综述

2. 人工智能当前发展瓶颈

四、人工智能芯片介绍与典型公司分析

1. 人工智能芯片适用性分析

GPU

FPGA

ASIC

2. 人工智能芯片产业链分析

3. 人工智能芯片典型公司分析

人工智能行业概述

CHAPTER 1

行业驱动——数据量、运算力、算法技术

政策法规

投资热度

国际投资热度分析

国内投资热度分析

国内公司运营数据分析6

36Kr-人工智能行业研究报告

2017年2月

数据量、运算力和算法模型是影响人工智能行业发展的三大要素。

2000年之后,数据量的上涨、运算力的提升和深度学习算法的出现

极大的促进了人工智能行业的发展。

海量数据为人工智能发展提供燃料

要理解数据量的重要性,得先从算法说起。数据量和算法可以分别

比作人工智能的燃料和发动机。算法是计算机基于所训练的数据集

归纳出的识别逻辑,好的算法模型可以实现精准的物体和场景识别

。数据集的丰富性和大规模性对算法训练尤为重要。因此可以说,

实现机器精准视觉识别的第一步,就是获取海量而优质的应用场景

数据。以人脸识别为例,训练该算法模型的图片数据量至少应为百

万级别。

2000年以来,得益于互联网、社交媒体、移动设备和廉价的传感器

,这个世界产生并存储的数据量急剧增加,这为通过深度学习的方

法来训练计算机视觉技术提供很好的土壤。IDC数据显示,从2011

年起,全球所产生的数据量已达到ZB级别(1ZB约为10亿GB ),海

量的数据将为计算机视觉算法模型提供远远不断的素材。而关于数

据量对提高算法准确率方面的重要性,更有学者提出:“It’s not

who has the best algorithm that wins. It’s who has the

most data. ”

行业驱动力 · 数据量

海量数据为人工智能发展提供燃料

大数据

训练模型 应用于具体场景

算法模型 场景应用

0

10

20

30

40

50

来源:IDC,36氪研究院

2020

数据量与准确率之间的关系 2009-2020年全球总体数据量(单位:ZB)

2009

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000

测试字符数量

Window Memory-Based

Perceptron Naïve Bayes

说明:window、memory-based、perceptron、naive bayes 均为不同算法

来源:Stanford机器学习公开课,36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析

7

36Kr-人工智能行业研究报告

2017年2月

人工智能领域是一个数据密集的领域,传统的数据处理技术难以满

足高强度、大数据的处理需求。 AI芯片的出现让大规模的数据效率

大大提升,加速了深层神经网络的训练迭代速度,极大的促进了人

工智能行业的发展。

AI算法的处理需要大量的矩阵计算操作,因此特别适合使用并行运

算芯片进行数据处理。而传统的CPU一次只能同时做一两个加减法

运算,无法满足并行运算的需求。目前,出现了GPU、NPU、

FPGA和各种各样的AI-PU专用芯片。而其中, 出现最早的GPU为

人工智能的发展做出了巨大的贡献。

擅长并行计算的GPU大幅提升机器学习效率。在GPU出现之前,算

法运行的速度是很慢的,即使是一个简单的神经网络数据的培训,

也得花费几天、甚至几周的时间。 1999 年,Nvidia 公司在推销

Geforce 256 芯片时,提出了GPU( 图像处理器) 概念。GPU是专

为执行复杂的数学和集合计算而设计的数据处理芯片。它的出现让

并行计算成为可能,对数据处理规模、数据运算速度带来了指数级

的增长,极大的促进人工智能行业,尤其计算机视觉领域的发展。

GPU与传统CPU相比,在处理海量数据方面有压倒性的优势。

Rajat Raina 与吴恩达的合作论文 “用 GPU 进行大规模无监督深

度学习” 显示,在运行大规模无监督深度学习模型时,使用 GPU

和使用传统双核 CPU 在运算速度上的差距最大会达到近七十倍

在一个四层,一亿个参数的深度学习网络上,使用 GPU 将程序运

行时间从几周降低到一天。

今天,数据处理速度不再成为制约计算机视觉发展的主要瓶颈。想

要发挥专用芯片的计算优势,需要芯片结构和软件算法两者相匹配

。目前的趋势是,随着对人工智能各类应用需求的不断增强,专门

用于加速人工智能应用的AI-PU或将成为计算机另一个标配组件。

行业驱动 · 运算力

运算力的提升大幅推动人工智能发展

世界上第一款GPU-GeForce 256 中科寒武纪即将投产的 “寒武纪”NPU Altera的高端FPGA 产品 Stratix 10

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析8

36Kr-人工智能行业研究报告

2017年2月

在深度学习出现之前,机器学习领域的主流是各种浅层学习算法

如神经网络的反响传播算法(BP算法)、支撑向量机(SVM)、

Boosting、Logistic Regression等。这些算法的局限性在于对有限

样本和计算单元的情况下对复杂函数的表示能力有限,对复杂数据

的处理受到制约。以计算机视觉为例,作为一个数据复杂的领域,

浅层学习算法的识别准确率并不高。该类识别原理多为通过寻找合

适的特征来让机器辨识物品状态,由于这个处理逻辑是浅层的,不

能穷举各种复杂的情境,因而算法拟合的准确率不高。

深度学习突破人工智能算法瓶颈。2006年,Geoffrey Hinton 和合

作者发表论文,“A fast algorithm for deep belief nets”,此后

“Deep Learning(深度学习)”的概念被提出。

以计算机视觉为例,深度学习出现之前,基于寻找合适的特征来让

机器辨识物体状态的方式几乎代表了计算机视觉的全部。尽管对多

层神经网络的探索已经存在,然而实践效果并不好。深度学习出现

之后,计算机视觉的主要识别方式发生重大转变,自学习状态成为

视觉识别主流。即,机器从海量数据库里自行归纳物体特征,然后

按照该特征规律识别物体。图像识别的精准度也得到极大的提升,

从70%+提升到95%。

在短短几年时间里,深度学习颠覆了语音识别、语义理解、计算机

视觉等基础应用领域的算法设计思路,逐渐形成了从一类训练数据

出发,经过一个端到端的模型,直接输出最终结果的一种模式。

于深度学习是根据提供给它的大量的实际行为(训练数据集)来自

我调整规则中的参数,进而调整规则,因此在和训练数据集类似的

场景下,可以做出一些很准确的判断。

行业驱动力 · 算法

深度学习突破人工智能算法瓶颈

72.00% 74.50%

84.70%

89.00%

93.00% 95.00%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015

2010-2015年 ImageNet 比赛图像识别准确率

注释:ImageNet是计算机视觉系统识别项目。

来源:36氪研究院

过去 现在 未来

Google translate语义识别准确率

60%

83.4%

注释:Google translate是语义识别项目。

来源:36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析9

36Kr-人工智能行业研究报告

2017年2月

其他国家人工智能相关政策

各国均在政策层面强调和推动人工智能的发展。其中,美国侧重于

研发新型脑研究技术;欧盟主攻以超级计算机技术来模拟脑功能;

日本则聚焦以动物为模型研究各种脑功能和脑疾病的机理。

政策法规 · 国外

政策加码,人工智能发展如火如荼

国家 相关措施

美国

2013 年4 月,美国正式公布“推进创新神经技术脑

研究计划”(BRAIN)。得到政府拨款1.1 亿美元,

覆盖美国国家卫生研究院(HIN)、国防部高级研究

项目局、国家科学基金会。

2014 年HIN 小组制定了未来十年详细计划,预计每

年投入3-5 亿美元开发用于监测和映射大脑活动和结

构的新工具,十年计划共花费45 亿美元。

欧盟

2013 年初,欧盟宣布了未来十年的“新兴旗舰技

术项目”——人脑计划(HBP),该项目汇聚了来自

24 个国家的112 家企业、研究所和高校等机构,总投

资预计将达到12 亿欧元。计划在2018 年前开发出第

一个具有意识和智能的人造大脑.

日本

2014 年9 月启动大脑研究计划Brain/MINDS。该计划

为期10 年,由日本理化学研究所主导实施,旨在理解

大脑如何工作以及通过建立动物模型,研究大脑神经回

路技术,从而更好地诊断以及治疗大脑疾病。

来源:36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析10

36Kr-人工智能行业研究报告

2017年2月

国内人工智能相关政策

国内近几年也出台了相关扶植人工智能发展的政策,积极推动人工

智能在各个细分领域的渗透。2016年5月,国家四部委更是颁布《

“互联网+”人工智能三年行动实施方案》,明确提出要培育发展

人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智

能化水平。

政策法规 · 国内

政策加码,人工智能发展如火如荼


实施时间 颁布主体 法律法规 相关内容

2015.5 国务院 《中国制造2025》

提出“加快发展智能制造装备和产品”,指出“组

织研发具有深度感知、智慧决策、自动执行功能的

高档数控机床、工业机器人、增材制造装备等智能

制造装备以及智能化生产线,统筹布局和推动智能

交通工具、智能工程机械、服务机器人、智能家电、

智能照明电器、可穿戴设备等产品研发和产业化。”

2015/7/4 国务院

《国务院关于积极推进

“互联网+”行动的指导

意见》

明确提出人工智能作为11个重点布局的领域之一,

促进人工智能在智能家居、智能终端、智能汽车、

机器人等领域的推广应用。

2015/7/9 中央办公厅、

国务院

《关于加强社会治安防控

体系建设的意见》

加大公共安全视频监控覆盖,将社会治安防控信息

化纳入智慧城市建设总体规划,加深大数据、云计

算和智能传感等新技术的应用。

2016.1 国务院 《“十三五”国家科技创

新规划》

智能制造和机器人成为“科技创新-2030 项目”重

大工程之一。

2016/3/18 国务院

《国民经济和社会发展第

十三个五年规划纲要(草

案)》

人工智能概念进入“十三五”重大工程。

2016/5/18

国家发展改革

委、科技部、

工业和信息化

部、中央网信

《“互联网+”人工智能

三年行动实施方案》

明确了要培育发展人工智能新兴产业、推进重点领

域智能产品创新、提升终端产品智能化水平,并且

政府将在资金、标准体系、知识产权、人才培养、

国际合作、组织实施等方面进行保障。

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析11

36Kr-人工智能行业研究报告

2017年2月

融资规模与成立公司数量总览

咨询公司Venture Scanner统计,截止2016年Q2,全球人工智能

公司已突破1000家,跨越13个子门类,融资金额高达48亿美元。

而人工智能创投金额在5年间增长了12倍。

投资热度 · 全球

全球AI领域融资金额5年增长12倍

62 96 66 68 64 138 125 102 186 283 211 141 321 555 394 942 769 398 911 485 6361,049

11

21

13

22 20

38 37 38 43 50

63

47

70 77 84 80

92

84

120

100

134

推荐文章

人脸识别主要算法原理主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。1. 基于几何特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。    采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。可变形模板法可以视为几何特征方法的一种改进,其基本思想是 :设计一个参数可调的器官模型 (即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。    这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。 基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 2. 局部特征分析方法(Local Face Analysis)    主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。3. 特征脸方法(Eigenface或PCA)特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。    特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中生成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。     基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。现在Eigenface(PCA)算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。    该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。其技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。Turk和Pentland提出特征脸的方法,它根据一组人脸训练图像构造主元子空间,由于主元具有脸的形状,也称为特征脸  ,识别时将测试  图像投影到主元子空间上,得到一组投影系数,和各个已知人的人脸图像比较进行识别。Pentland等报告了相当好的结果,在 200个人的 3000幅图像中得到 95%的正确识别率,在FERET数据库上对 150幅正面人脸象只有一个误识别。但系统在进行特征脸方法之前需要作大量预处理工作如归一化等。    在传统特征脸的基础上,研究者注意到特征值大的特征向量 (即特征脸 )并不一定是分类性能好的方向,据此发展了多种特征 (子空间 )选择方法,如Peng的双子空间方法、Weng的线性歧义分析方法、Belhumeur的FisherFace方法等。事实上,特征脸方法是一种显式主元分析人脸建模,一些线性自联想、线性压缩型BP网则为隐式的主元分析方法,它们都是把人脸表示为一些向量的加权和,这些向量是训练集叉积阵的主特征向量,Valentin对此作了详细讨论。总之,特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性。基于KL 变换的特征人脸识别方法基本原理:    KL变换是图象压缩中的一种最优正交变换,人们将它用于统计特征提取,从而形成了子空间法模式识别的基础,若将KL变换用于人脸识别,则需假设人脸处于低维线性空间,且不同人脸具有可分性,由于高维图象空间KL变换后可得到一组新的正交基,因此可通过保留部分正交基,以生成低维人脸空间,而低维空间的基则是通过分析人脸训练样本集的统计特性来获得,KL变换的生成矩阵可以是训练样本集的总体散布矩阵,也可以是训练样本集的类间散布矩阵,即可采用同一人的数张图象的平均来进行训练,这样可在一定程度上消除光线等的干扰,且计算量也得到减少,而识别率不会下降。4. 基于弹性模型的方法    Lades等人针对畸变不变性的物体识别提出了动态链接模型 (DLA),将物体用稀疏图形来描述 (见下图),其顶点用局部能量谱的多尺度描述来标记,边则表示拓扑连接关系并用几何距离来标记,然后应用塑性图形匹配技术来寻找最近的已知图形。Wiscott等人在此基础上作了改进,用FERET图像库做实验,用 300幅人脸图像和另外 300幅图像作比较,准确率达到 97.3%。此方法的缺点是计算量非常巨大 。    Nastar将人脸图像 (Ⅰ ) (x,y)建模为可变形的 3D网格表面 (x,y,I(x,y) ) (如下图所示 ),从而将人脸匹配问题转化为可变形曲面的弹性匹配问题。利用有限元分析的方法进行曲面变形,并根据变形的情况判断两张图片是否为同一个人。这种方法的特点在于将空间 (x,y)和灰度I(x,y)放在了一个 3D空间中同时考虑,实验表明识别结果明显优于特征脸方法。    Lanitis等提出灵活表现模型方法,通过自动定位人脸的显著特征点将人脸编码为 83个模型参数,并利用辨别分析的方法进行基于形状信息的人脸识别。弹性图匹配技术是一种基于几何特征和对灰度分布信息进行小波纹理分析相结合的识别算法,由于该算法较好的利用了人脸的结构和灰度分布信息,而且还具有自动精确定位面部特征点的功能,因而具有良好的识别效果,适应性强识别率较高,该技术在FERET测试中若干指标名列前茅,其缺点是时间复杂度高,速度较慢,实现复杂。5. 神经网络方法(Neural Networks)人工神经网络是一种非线性动力学系统,具有良好的自组织、自适应能力。目前神经网络方法在人脸识别中的研究方兴未艾。Valentin提出一种方法,首先提取人脸的 50个主元,然后用自相关神经网络将它映射到 5维空间中,再用一个普通的多层感知器进行判别,对一些简单的测试图像效果较好;Intrator等提出了一种混合型神经网络来进行人脸识别,其中非监督神经网络用于特征提取,而监督神经网络用于分类。Lee等将人脸的特点用六条规则描述,然后根据这六条规则进行五官的定位,将五官之间的几何距离输入模糊神经网络进行识别,效果较一般的基于欧氏距离的方法有较大改善,Laurence等采用卷积神经网络方法进行人脸识别,由于卷积神经网络中集成了相邻像素之间的相关性知识,从而在一定程度上获得了对图像平移、旋转和局部变形的不变性,因此得到非常理想的识别结果,Lin等提出了基于概率决策的神经网络方法 (PDBNN),其主要思想是采用虚拟 (正反例 )样本进行强化和反强化学习,从而得到较为理想的概率估计结果,并采用模块化的网络结构 (OCON)加快网络的学习。这种方法在人脸检测、人脸定位和人脸识别的各个步骤上都得到了较好的应用,其它研究还有 :Dai等提出用Hopfield网络进行低分辨率人脸联想与识别,Gutta等提出将RBF与树型分类器结合起来进行人脸识别的混合分类器模型,Phillips等人将MatchingPursuit滤波器用于人脸识别,国内则采用统计学习理论中的支撑向量机进行人脸分类。    神经网络方法在人脸识别上的应用比起前述几类方法来有一定的优势,因为对人脸识别的许多规律或规则进行显性的描述是相当困难的,而神经网络方法则可以通过学习的过程获得对这些规律和规则的隐性表达,它的适应性更强,一般也比较容易实现。因此人工神经网络识别速度快,但识别率低 。而神经网络方法通常需要将人脸作为一个一维向量输入,因此输入节点庞大,其识别重要的一个目标就是降维处理。    PCA的算法描述:利用主元分析法 (即 Principle Component Analysis,简称 PCA)进行识别是由 Anderson和 Kohonen提出的。由于 PCA在将高维向量向低维向量转化时,使低维向量各分量的方差最大,且各分量互不相关,因此可以达到最优的特征抽取。6. 其它方法:除了以上几种方法,人脸识别还有其它若干思路和方法,包括一下一些:1) 隐马尔可夫模型方法(Hidden Markov Model)2) Gabor 小波变换+图形匹配(1)精确抽取面部特征点以及基于Gabor引擎的匹配算法,具有较好的准确性,能够排除由于面部姿态、表情、发型、眼镜、照明环境等带来的变化。(2)Gabor滤波器将Gaussian网络函数限制为一个平面波的形状,并且在滤波器设计中有优先方位和频率的选择,表现为对线条边缘反应敏感。(3)但该算法的识别速度很慢,只适合于录象资料的回放识别,对于现场的适应性很差。3) 人脸等密度线分析匹配方法(1) 多重模板匹配方法该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。(2) 线性判别分析方法(Linear Discriminant Analysis,LDA)(3)本征脸法    本征脸法将图像看做矩阵 ,计算本征值和对应的本征向量作为代数特征进行识别 ,具有无需提取眼嘴鼻等几何特征的优点 ,但在单样本时识别率不高 ,且在人脸模式数较大时计算量大 (4) 特定人脸子空间(FSS)算法该技术来源于但在本质上区别于传统的"特征脸"人脸识别方法。"特征脸"方法中所有人共有一个人脸子空间,而该方法则为每一个体人脸建立一个该个体对象所私有的人脸子空间,从而不但能够更好的描述不同个体人脸之间的差异性,而且最大可能地摈弃了对识别不利的类内差异性和噪声,因而比传统的"特征脸算法"具有更好的判别能力。另外,针对每个待识别个体只有单一训练样本的人脸识别问题,提出了一种基于单一样本生成多个训练样本的技术,从而使得需要多个训练样本的个体人脸子空间方法可以适用于单训练样本人脸识别问题。(5)奇异值分解(singular value decomposition,简称SVD)是一种有效的代数特征提取方法.由于奇异值特征在描述图像时是稳定的,且具有转置不变性、旋转不变性、位移不变性、镜像变换不变性等重要性质,因此奇异值特征可以作为图像的一种有效的代数特征描述。奇异值分解技术已经在图像数据压缩、信号处理和模式分析中得到了广泛应用. 7. 面像识别的主要商业系统90年代中后期以来,一些商业性的面像识别系统开始进入市场。目前,主要商业系统包括:● Visionics公司的FaceIt面像识别系统,该系统基于Rockefeller大学开发的局部特征分析(LFA)算法;● Lau Tech.公司的面像识别/确认系统,采用MIT技术;● Miros公司的Trueface及eTrue身份验证系统,其核心技术为神经网络;● C-VIS公司的面像识别/确认系统;● Banque-Tec.公司的身份验证系统;● Visage Gallery’s 身份认证系统,基于MIT媒体实验室的Eigenface技术;● Plettac Electronic’s FaceVACS出入控制系统;● 台湾的BioID系统,它基于人脸、唇动和语音三者信息融合的Biometrics系统。其中,FaceIt系统是最具有代表性的商业产品,目前已在很多地方得到了应用。去年,它在英国用于被称为“Mandrake”的反罪犯系统中,该系统在144个监控摄像机采集的视频序列中搜索已知的罪犯或者嫌疑犯,如发现可能的罪犯,系统将通知中心控制室的警员。笔者曾使用过FaceIt系统,并对其进行了各项指标的评测。结果表明,该系统在控制光照、准正面(3坐标轴上的旋转不超过15度)、无饰物的情况下具有较好的识别性能。但在实用过程中也发现,只有训练集人脸图像的采集条件与测试集人脸图像的采集条件基本一致时才能具有良好的识别性能,否则,其性能将急剧下降,尤其光照变化、姿态变化、黑框眼镜、帽子、夸张的表情、胡须和长发等对其性能的影响更大。面像识别系统的测试    基于对面像识别技术在军事安全等领域重要性的考虑,美国国防部的ARPA资助建立了一个对现有面像识别技术进行评测的程序,并分别于1994年8月、1995年3月和1996年9月(截至1997年3月)组织了三次面像识别和人脸确认的性能评测,其目的是要展示面像识别研究的最新进展和最高学术水平,同时发现现有面像识别技术所面临的主要问题,为以后的研究提供方向性指南。尽管该测试只对美国研究机构开放,但它在事实上成为了该领域的公认测试标准,其测试结果已被认为反映了面像识别研究的最高学术水平。    根据2000年公开发表的FERET’97测试报告,美国南加州大学(USC)、马里兰大学(UMD)、麻省理工学院(MIT)等研究机构的面像识别技术具有最好的识别性能。在训练集和测试集摄像条件相似的200人的识别测试中,几个系统都产生了接近100%的识别率。值得一提的是,即使是最简单的相关匹配算法也具有很高的识别性能。在更大对象集的FERET测试中(人数大于等于1166人),在同一摄像条件下采集的正面图像识别中,最高首选识别率为95%;而对用不同的摄像机和不同的光照条件采集的测试图像,最高首选识别率骤降为82%;对一年后采集的图像测试,最大的准确率仅仅接近51%。    该测试结果表明,目前的面像识别算法对于不同的摄像机、不同的光照条件和年龄变化的适应能力非常差,理应得到研究者的足够重视。而且值得注意的是,该测试中所用的人脸图像均为比较标准的正面人脸图像,姿态变化非常小,也没有夸张的表情和饰物,以及没有提及面部毛发改变的情况。所以,我们认为,除了FERET测试所揭示的上述面像识别研究需要面对的问题之外,还需要考虑诸如姿态、饰物(眼镜、帽子等)、面部表情、面部毛发等可变因素对面像识别性能的影响。这些因素也是开发实用的面像识别产品时必然会遇到的最关键的技术问题。为进一步测试商业面像识别系统的性能,并揭示2000年前后面像识别技术的最新进展,美国国防部的反毒品技术开发计划办公室于去年5月和6月对美国的主要商业面像识别系统进行了评测,称为FRVT’2000(Face Recognition Vender Test)评测。该计划邀请了美国所有面像识别系统厂商参加,共24家,但只有8家响应,最终有5家公司参加了评测,而只有3家的系统在规定时间内完成了全部对比实验。可以认为,这3家公司的产品是目前最具竞争力的商业识别系统,它们分别是FaceIt系统、Lau Tech.公司的系统和C-VIS公司的系统。FRVT’2000评估了这些系统对图像压缩、用户-摄像机距离、表情、光照、录制设备、姿态、分辨率和时间间隔等影响因素的识别性能。结果表明,面像识别系统的性能与1997年的测试相比有了一定的进步,但其识别性能对各种条件,如光照、老化、距离、姿态等,仍然离人们的期望值较远。国内:中科院-上海银晨近年来,国内学者在对特征脸技术进行认真研究的基础上,尝试了基于特征脸特征提取方法和各种后端分类器相结合的方法,并提出了各种各样的改进版本或扩展算法,主要的研究内容包括线性/非线性判别分析(LDA/KDA)、Bayesian概率模型、支持矢量机(SVM)、人工神经网络(NN)以及类内和类间双子空间(inter/intra-class dual subspace)分析方法等等。 近年来,中科院计算所在对特征脸技术进行认真研究的基础上,尝试了基于特征脸特征提取方法和各种后端分类器相结合的方法,并提出了各种各样的改进版本或扩展算法,主要的研究内容包括线性/非线性判别分析(LDA/KDA)、Bayesian概率模型、支持矢量机(SVM)、人工神经网络(NN)以及类内和类间双子空间(inter/intra-class dual subspace)分析方法等等。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。