人工智能行业研究报告

人工智能行业研究报告

涵盖AI基础技术及终端产品

研究范围:

人工智能是一门综合了计算机科学、生理学、哲学的交叉学科。

是使用机器代替人类实现认知、识别、分析、决策等功能,均可认

为使用了人工智能技术。作为一种基础技术,人工智能在很多行业

都有用武之地。既有人工智能+基础行业的概念(如人工智能+金融

=Fintech),也有其具体应用行业的概念(比如机器人)

按照技术应用的不同场景,可以将人工智能分为基础技术类及终端

产品类,本报告研究范围涵盖以下领域:

研究目的:

本报告将集中探讨:

„ 人工智能行业整体的发展现状与技术发展趋势

„ 各细分领域投融资热度与技术成熟度

„ 巨头在人工智能领域的布局与策略

„ 各应用领域市场规模、竞争格局、进入壁垒、产业链上下游构成

„ 行业标杆的商业模式、核心竞争力、未来发展预期


目 录 Contents

一、人工智能行业驱动力

1. 行业驱动——数据量、运算力、算法技术

2. 政策法规

3. 投资热度

国际投资热度分析

国内投资热度分析

国内公司运营数据分析

二、人工智能产业链与巨头布局分析

1. 产业链构成

2. 巨头布局

开源平台布局

芯片布局

技术布局

一、人工智能行业概述

三、人工智能基础应用介绍与典型公司分析

1. 语音识别

2. 语义识别

3. 计算机视觉目 录 Contents

五、人工智能在各行业的应用介绍与典型公司分析

1. 机器人

2. AI+金融

3. AI+医疗

4. AI+安防

5. AI+家居

六、人工智能芯片介绍与典型公司分析

六、人工智能行业趋势展望

1. 人工智能各行业综述

2. 人工智能当前发展瓶颈

四、人工智能芯片介绍与典型公司分析

1. 人工智能芯片适用性分析

GPU

FPGA

ASIC

2. 人工智能芯片产业链分析

3. 人工智能芯片典型公司分析

人工智能行业概述

CHAPTER 1

行业驱动——数据量、运算力、算法技术

政策法规

投资热度

国际投资热度分析

国内投资热度分析

国内公司运营数据分析6

36Kr-人工智能行业研究报告

2017年2月

数据量、运算力和算法模型是影响人工智能行业发展的三大要素。

2000年之后,数据量的上涨、运算力的提升和深度学习算法的出现

极大的促进了人工智能行业的发展。

海量数据为人工智能发展提供燃料

要理解数据量的重要性,得先从算法说起。数据量和算法可以分别

比作人工智能的燃料和发动机。算法是计算机基于所训练的数据集

归纳出的识别逻辑,好的算法模型可以实现精准的物体和场景识别

。数据集的丰富性和大规模性对算法训练尤为重要。因此可以说,

实现机器精准视觉识别的第一步,就是获取海量而优质的应用场景

数据。以人脸识别为例,训练该算法模型的图片数据量至少应为百

万级别。

2000年以来,得益于互联网、社交媒体、移动设备和廉价的传感器

,这个世界产生并存储的数据量急剧增加,这为通过深度学习的方

法来训练计算机视觉技术提供很好的土壤。IDC数据显示,从2011

年起,全球所产生的数据量已达到ZB级别(1ZB约为10亿GB ),海

量的数据将为计算机视觉算法模型提供远远不断的素材。而关于数

据量对提高算法准确率方面的重要性,更有学者提出:“It’s not

who has the best algorithm that wins. It’s who has the

most data. ”

行业驱动力 · 数据量

海量数据为人工智能发展提供燃料

大数据

训练模型 应用于具体场景

算法模型 场景应用

0

10

20

30

40

50

来源:IDC,36氪研究院

2020

数据量与准确率之间的关系 2009-2020年全球总体数据量(单位:ZB)

2009

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000

测试字符数量

Window Memory-Based

Perceptron Naïve Bayes

说明:window、memory-based、perceptron、naive bayes 均为不同算法

来源:Stanford机器学习公开课,36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析

7

36Kr-人工智能行业研究报告

2017年2月

人工智能领域是一个数据密集的领域,传统的数据处理技术难以满

足高强度、大数据的处理需求。 AI芯片的出现让大规模的数据效率

大大提升,加速了深层神经网络的训练迭代速度,极大的促进了人

工智能行业的发展。

AI算法的处理需要大量的矩阵计算操作,因此特别适合使用并行运

算芯片进行数据处理。而传统的CPU一次只能同时做一两个加减法

运算,无法满足并行运算的需求。目前,出现了GPU、NPU、

FPGA和各种各样的AI-PU专用芯片。而其中, 出现最早的GPU为

人工智能的发展做出了巨大的贡献。

擅长并行计算的GPU大幅提升机器学习效率。在GPU出现之前,算

法运行的速度是很慢的,即使是一个简单的神经网络数据的培训,

也得花费几天、甚至几周的时间。 1999 年,Nvidia 公司在推销

Geforce 256 芯片时,提出了GPU( 图像处理器) 概念。GPU是专

为执行复杂的数学和集合计算而设计的数据处理芯片。它的出现让

并行计算成为可能,对数据处理规模、数据运算速度带来了指数级

的增长,极大的促进人工智能行业,尤其计算机视觉领域的发展。

GPU与传统CPU相比,在处理海量数据方面有压倒性的优势。

Rajat Raina 与吴恩达的合作论文 “用 GPU 进行大规模无监督深

度学习” 显示,在运行大规模无监督深度学习模型时,使用 GPU

和使用传统双核 CPU 在运算速度上的差距最大会达到近七十倍

在一个四层,一亿个参数的深度学习网络上,使用 GPU 将程序运

行时间从几周降低到一天。

今天,数据处理速度不再成为制约计算机视觉发展的主要瓶颈。想

要发挥专用芯片的计算优势,需要芯片结构和软件算法两者相匹配

。目前的趋势是,随着对人工智能各类应用需求的不断增强,专门

用于加速人工智能应用的AI-PU或将成为计算机另一个标配组件。

行业驱动 · 运算力

运算力的提升大幅推动人工智能发展

世界上第一款GPU-GeForce 256 中科寒武纪即将投产的 “寒武纪”NPU Altera的高端FPGA 产品 Stratix 10

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析8

36Kr-人工智能行业研究报告

2017年2月

在深度学习出现之前,机器学习领域的主流是各种浅层学习算法

如神经网络的反响传播算法(BP算法)、支撑向量机(SVM)、

Boosting、Logistic Regression等。这些算法的局限性在于对有限

样本和计算单元的情况下对复杂函数的表示能力有限,对复杂数据

的处理受到制约。以计算机视觉为例,作为一个数据复杂的领域,

浅层学习算法的识别准确率并不高。该类识别原理多为通过寻找合

适的特征来让机器辨识物品状态,由于这个处理逻辑是浅层的,不

能穷举各种复杂的情境,因而算法拟合的准确率不高。

深度学习突破人工智能算法瓶颈。2006年,Geoffrey Hinton 和合

作者发表论文,“A fast algorithm for deep belief nets”,此后

“Deep Learning(深度学习)”的概念被提出。

以计算机视觉为例,深度学习出现之前,基于寻找合适的特征来让

机器辨识物体状态的方式几乎代表了计算机视觉的全部。尽管对多

层神经网络的探索已经存在,然而实践效果并不好。深度学习出现

之后,计算机视觉的主要识别方式发生重大转变,自学习状态成为

视觉识别主流。即,机器从海量数据库里自行归纳物体特征,然后

按照该特征规律识别物体。图像识别的精准度也得到极大的提升,

从70%+提升到95%。

在短短几年时间里,深度学习颠覆了语音识别、语义理解、计算机

视觉等基础应用领域的算法设计思路,逐渐形成了从一类训练数据

出发,经过一个端到端的模型,直接输出最终结果的一种模式。

于深度学习是根据提供给它的大量的实际行为(训练数据集)来自

我调整规则中的参数,进而调整规则,因此在和训练数据集类似的

场景下,可以做出一些很准确的判断。

行业驱动力 · 算法

深度学习突破人工智能算法瓶颈

72.00% 74.50%

84.70%

89.00%

93.00% 95.00%

60%

70%

80%

90%

100%

2010 2011 2012 2013 2014 2015

2010-2015年 ImageNet 比赛图像识别准确率

注释:ImageNet是计算机视觉系统识别项目。

来源:36氪研究院

过去 现在 未来

Google translate语义识别准确率

60%

83.4%

注释:Google translate是语义识别项目。

来源:36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析9

36Kr-人工智能行业研究报告

2017年2月

其他国家人工智能相关政策

各国均在政策层面强调和推动人工智能的发展。其中,美国侧重于

研发新型脑研究技术;欧盟主攻以超级计算机技术来模拟脑功能;

日本则聚焦以动物为模型研究各种脑功能和脑疾病的机理。

政策法规 · 国外

政策加码,人工智能发展如火如荼

国家 相关措施

美国

2013 年4 月,美国正式公布“推进创新神经技术脑

研究计划”(BRAIN)。得到政府拨款1.1 亿美元,

覆盖美国国家卫生研究院(HIN)、国防部高级研究

项目局、国家科学基金会。

2014 年HIN 小组制定了未来十年详细计划,预计每

年投入3-5 亿美元开发用于监测和映射大脑活动和结

构的新工具,十年计划共花费45 亿美元。

欧盟

2013 年初,欧盟宣布了未来十年的“新兴旗舰技

术项目”——人脑计划(HBP),该项目汇聚了来自

24 个国家的112 家企业、研究所和高校等机构,总投

资预计将达到12 亿欧元。计划在2018 年前开发出第

一个具有意识和智能的人造大脑.

日本

2014 年9 月启动大脑研究计划Brain/MINDS。该计划

为期10 年,由日本理化学研究所主导实施,旨在理解

大脑如何工作以及通过建立动物模型,研究大脑神经回

路技术,从而更好地诊断以及治疗大脑疾病。

来源:36氪研究院

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析10

36Kr-人工智能行业研究报告

2017年2月

国内人工智能相关政策

国内近几年也出台了相关扶植人工智能发展的政策,积极推动人工

智能在各个细分领域的渗透。2016年5月,国家四部委更是颁布《

“互联网+”人工智能三年行动实施方案》,明确提出要培育发展

人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智

能化水平。

政策法规 · 国内

政策加码,人工智能发展如火如荼


实施时间 颁布主体 法律法规 相关内容

2015.5 国务院 《中国制造2025》

提出“加快发展智能制造装备和产品”,指出“组

织研发具有深度感知、智慧决策、自动执行功能的

高档数控机床、工业机器人、增材制造装备等智能

制造装备以及智能化生产线,统筹布局和推动智能

交通工具、智能工程机械、服务机器人、智能家电、

智能照明电器、可穿戴设备等产品研发和产业化。”

2015/7/4 国务院

《国务院关于积极推进

“互联网+”行动的指导

意见》

明确提出人工智能作为11个重点布局的领域之一,

促进人工智能在智能家居、智能终端、智能汽车、

机器人等领域的推广应用。

2015/7/9 中央办公厅、

国务院

《关于加强社会治安防控

体系建设的意见》

加大公共安全视频监控覆盖,将社会治安防控信息

化纳入智慧城市建设总体规划,加深大数据、云计

算和智能传感等新技术的应用。

2016.1 国务院 《“十三五”国家科技创

新规划》

智能制造和机器人成为“科技创新-2030 项目”重

大工程之一。

2016/3/18 国务院

《国民经济和社会发展第

十三个五年规划纲要(草

案)》

人工智能概念进入“十三五”重大工程。

2016/5/18

国家发展改革

委、科技部、

工业和信息化

部、中央网信

《“互联网+”人工智能

三年行动实施方案》

明确了要培育发展人工智能新兴产业、推进重点领

域智能产品创新、提升终端产品智能化水平,并且

政府将在资金、标准体系、知识产权、人才培养、

国际合作、组织实施等方面进行保障。

1.1行业驱动---

数据量

运算力

算法技术

1.2 政策法规

1.3 投资热度

全球投资热度

国内投资热度

国内公司运营数据分析11

36Kr-人工智能行业研究报告

2017年2月

融资规模与成立公司数量总览

咨询公司Venture Scanner统计,截止2016年Q2,全球人工智能

公司已突破1000家,跨越13个子门类,融资金额高达48亿美元。

而人工智能创投金额在5年间增长了12倍。

投资热度 · 全球

全球AI领域融资金额5年增长12倍

62 96 66 68 64 138 125 102 186 283 211 141 321 555 394 942 769 398 911 485 6361,049

11

21

13

22 20

38 37 38 43 50

63

47

70 77 84 80

92

84

120

100

134

推荐文章

数据标注员 人工智能背后的人工力量“导语:机器学习必需数据标注”  “目前我国已有庞大的数据加工队伍,仅北京就有一百多家专门从事数据标注的公司,全国从事这项工作的人大概超过千万,很多头部的互联网技术企业都有自己的数据标注公司。”        目前人工智能落地场景不断丰富,智能化应用正改变着我们的生活。而在AI产业高速发展的背后,数据标注师这个新职业的从业人数也正在壮大。数据标注行业流行着一句话,“有多少智能,就有多少人工”。目前AI算法能学习的数据,必须通过人力逐一标注,这些人力为AI产业提供养料,构建了AI金字塔的基础。        近日,支付宝公益基金会、阿里巴巴人工智能实验室联合中国妇女发展基金会在贵州铜仁万山区启动了“AI豆计划”,这是该计划在全国启动的第一个试点地区。作为一种 “AI+扶贫”的公益新模式,计划旨在通过AI产业释放出的大量就业机会,在贫困地区培训相关职业人才、孵化社会企业,让贫困群众实现在家门口就业脱贫。        这些从业者不需要背井离乡,她们可以受训上岗,为AI机器学习 进行数据的分类和标注工作,让机器可以快速学习和认知文字、图片、视频等内容,成为一名“AI培育师”。机器学习必需数据标注        AI数据标注员被称作“人工智能背后的人工”。“数据是人工智能的血液。当下是大数据基础上的人工智能,是数据智能的深度学习时代,可以说谁掌握了数据,谁就有可能做好。”中科院自动化所研究员、视语科技创始人王金桥告诉科技日报记者。他解释,当前的人工智能也被称作数据智能,在这个发展阶段,神经网络的层数越多,神经网络越深,需要用于训练的数据量越大,“比如目前人脸识别做得好的是中青年人脸识别系统,因为年轻人坐车住酒店,采集的数据量大,小孩和老年人数据相对较少。”        但同时,只有数据是没用的。对于深度学习来讲,数据只有加上标签才有意义,才能用于机器的学习和进化。“标注是一个必须的工作。”王金桥说。        王金桥介绍,从数据的收集、清洗、标注到校验都离不开人工。数据标注最基本的就是画框,比如检测目标是车,标注员就需要把一张图上的所有车都标出来,画框要完全卡住车的外接矩形,框得不准确机器就可能“学坏”。再比如人的姿态识别,就包括18个关键点,经过训练的标注员才能掌握这些关键点的标注,标注完成的数据也才能符合机器学习的标准。        不同的数据类型对标注员的要求也不一样。除了一般较为简单、可以通过培训掌握的标注,还有一些需要专业背景的标注,比如在医疗数据标注中,标注员需要做医疗图像的分割,把肿瘤区域标出来,类似工作就需要看得懂片子的医生完成。再比如地方方言或外国文字,需要的也是掌握那门语言的标注员。人工标注帮助AI快速落地        随着人工智能的发展,数据的训练量非常大,数据标注公司应运而生,这些公司以网络方式运作,一个平台有产品经理和项目经理,接到一个任务就找人来做,大家通过网络群组报名后,由产品经理来培训,之后各自领取自己的任务,登录账号进行标注,检验经理校验合格后就付钱,不合格则需要重新修正。        “目前已经形成庞大的数据加工队伍,仅北京就有一百多家专门从事数据标注的公司,全国从事这项工作的人大概超过千万,很多头部的互联网技术企业都有自己的数据标注公司。”王金桥说,“这个阶段数据对性能的贡献是最大的,数据越多越丰富、代表性越强、模型效果越好,算法的健壮性和鲁棒性就越强。目前情况是大部分AI公司都还没有实现盈利,但标注公司除外。”        据王金桥介绍,国外也是一样,无人零售、无人驾驶等都需要大量的人力,基于用工成本的问题,除了隐私数据之外,他们会把标注工作放在第三世界国家完成,马来西亚、泰国、印度等国家都有数据标注分公司。        常见的报道中,数据标注总被描述为“血汗工厂”,这项工作和从业者被描述得廉价低质,人被重复性机械式的劳动异化。在王金桥的解释下,这一刻板印象也被逐渐打破。        他直言,目前这种大量的人工标注是有价值的,因为理论上解决问题很难,但有了大量数据,设计深度学习网络,可以在特定场景特定应用中用数据训练神经网络,从而在很多场景中可以让AI快速落地占领市场、驱动行业应用、促进行业升级和迭代。        “比如在手机玻璃缺陷、高铁轨道的缺陷、电网高压线绝缘子损坏等检测工作中,无人机拍摄画面后,由人来检测,随着数据量增加,机器得到的训练越来越充分,机器慢慢可以自动检测,类似工作可以很大程度上由机器代劳。”王金桥说,目前人工智能的智能性虽然比较弱,但在各行各业都会带来改变,这是AI推动产业革命的机会。数据标注需求持续增加        “现在科研界研究的都是无监督、小样本的深度学习,通过三维合成数据,用虚实结合的数据生成方式来训练机器,尽量减少数据的采集和标注,让机器自主学习、自主进化。”王金桥说,但由于缺乏理论上的突破性技术,所以虽然技术增长速度很快,但整体水平还比较低,目前的深度学习还是依赖基于统计意义的大数据模型,这要求数据足够多、足够均衡、基本满足真实世界的分布。        因此,标注这项工作会一直存在。        但王金桥也表示,随着无监督、小样本深度学习的进步,重复性标注的工作量会越来越少。“机器的识别和人一样,人经过几千年的进化,用语言用文字记录和存储几千年的文明,所以看到桌子就知道是桌子,看到灵芝知道是灵芝。机器也需要不断理解更多的内容,有数据标签,它才能学习,才会有智能。数据的加工是一个长期存在的过程,由画框到基础词汇,慢慢形成自己的知识图谱,才能自我推理和思考。”        目前的数据标注公司基本采取“计件付费”的模式,标注员的待遇与任务量和难度直接相关,熟练工一天能标几千张图片,月收入最高过万。这项工作也有一定专业性,受过培训才知道怎么标、标得清楚,人也要认真细心。“每天产生的数据量太大了,数据量持续增加,对标注的需求也持续增加。”王金桥说。        据阿里巴巴集团副总裁、阿里巴巴人工智能实验室总经理陈丽娟介绍,贵州万山仅仅是一个起点,未来项目的整体规划将聚焦贫困地区,寻找更多更适合发展“AI标注”产业的地区来落地。同时,也希望更多的人工智能企业加入,把AI标注的订单定向输送给贫困地区,为贫困群众提供更多就业机会。陈丽娟说。延伸阅读        AI数据服务发展新方向:细分化、多模态、专业化        数据表明,当前AI发展出现了细分化、多模态以及专业化三大特征。相应的,新变化对于AI数据服务行业也形成了一定的影响与方向指引。        当前AI已经进入技术落地阶段,应用场景涉及安防、金融、家居、交通等各大行业。而未来,在数据标注行业,从业者也将随着AI行业而一同进入细分市场追逐阶段。        同时多模态也成为了AI技术发展的一个特征。所谓多模态,即是对多维时间、空间、环境数据的感知与融合。如当前的自动驾驶需要雷达+摄像头才能跑的更稳,安防行业需要摄像头+雷达红外RFID才能感知得更精准、更真实。而在数据服务产业,企业也需要适应AI技术发展的多模态特征,掌握对多维传感器融合的数据采集与标注。        此外,尽管当前AI技术已经进入落地阶段,但是头部AI企业的落地场景相较传统行业的AI落地场景,在技术上会更有前沿性。而这些企业的一些先进技术研究也很有可能成为未来数据服务行业的一大发展方向,所以数据服务企业也需要在这些前沿场景中不断探索,才能在行业竞争中获得长期发展。(来源:环球网)

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。