数据标注员 人工智能背后的人工力量


数据标注员 人工智能背后的人工力量



“导语:机器学习必需数据标注”




  “目前我国已有庞大的数据加工队伍,仅北京就有一百多家专门从事数据标注的公司,全国从事这项工作的人大概超过千万,很多头部的互联网技术企业都有自己的数据标注公司。”



        目前人工智能落地场景不断丰富,智能化应用正改变着我们的生活。而在AI产业高速发展的背后,数据标注师这个新职业的从业人数也正在壮大。数据标注行业流行着一句话,“有多少智能,就有多少人工”。目前AI算法能学习的数据,必须通过人力逐一标注,这些人力为AI产业提供养料,构建了AI金字塔的基础。



        近日,支付宝公益基金会、阿里巴巴人工智能实验室联合中国妇女发展基金会在贵州铜仁万山区启动了“AI豆计划”,这是该计划在全国启动的第一个试点地区。作为一种 “AI+扶贫”的公益新模式,计划旨在通过AI产业释放出的大量就业机会,在贫困地区培训相关职业人才、孵化社会企业,让贫困群众实现在家门口就业脱贫。



        这些从业者不需要背井离乡,她们可以受训上岗,为AI机器学习 进行数据的分类和标注工作,让机器可以快速学习和认知文字、图片、视频等内容,成为一名“AI培育师”。



机器学习必需数据标注



        AI数据标注员被称作“人工智能背后的人工”。“数据是人工智能的血液。当下是大数据基础上的人工智能,是数据智能的深度学习时代,可以说谁掌握了数据,谁就有可能做好。”中科院自动化所研究员、视语科技创始人王金桥告诉科技日报记者。他解释,当前的人工智能也被称作数据智能,在这个发展阶段,神经网络的层数越多,神经网络越深,需要用于训练的数据量越大,“比如目前人脸识别做得好的是中青年人脸识别系统,因为年轻人坐车住酒店,采集的数据量大,小孩和老年人数据相对较少。”



        但同时,只有数据是没用的。对于深度学习来讲,数据只有加上标签才有意义,才能用于机器的学习和进化。“标注是一个必须的工作。”王金桥说。



        王金桥介绍,从数据的收集、清洗、标注到校验都离不开人工。数据标注最基本的就是画框,比如检测目标是车,标注员就需要把一张图上的所有车都标出来,画框要完全卡住车的外接矩形,框得不准确机器就可能“学坏”。再比如人的姿态识别,就包括18个关键点,经过训练的标注员才能掌握这些关键点的标注,标注完成的数据也才能符合机器学习的标准。



        不同的数据类型对标注员的要求也不一样。除了一般较为简单、可以通过培训掌握的标注,还有一些需要专业背景的标注,比如在医疗数据标注中,标注员需要做医疗图像的分割,把肿瘤区域标出来,类似工作就需要看得懂片子的医生完成。再比如地方方言或外国文字,需要的也是掌握那门语言的标注员。



人工标注帮助AI快速落地



        随着人工智能的发展,数据的训练量非常大,数据标注公司应运而生,这些公司以网络方式运作,一个平台有产品经理和项目经理,接到一个任务就找人来做,大家通过网络群组报名后,由产品经理来培训,之后各自领取自己的任务,登录账号进行标注,检验经理校验合格后就付钱,不合格则需要重新修正。



        “目前已经形成庞大的数据加工队伍,仅北京就有一百多家专门从事数据标注的公司,全国从事这项工作的人大概超过千万,很多头部的互联网技术企业都有自己的数据标注公司。”王金桥说,“这个阶段数据对性能的贡献是最大的,数据越多越丰富、代表性越强、模型效果越好,算法的健壮性和鲁棒性就越强。目前情况是大部分AI公司都还没有实现盈利,但标注公司除外。”



        据王金桥介绍,国外也是一样,无人零售、无人驾驶等都需要大量的人力,基于用工成本的问题,除了隐私数据之外,他们会把标注工作放在第三世界国家完成,马来西亚、泰国、印度等国家都有数据标注分公司。



        常见的报道中,数据标注总被描述为“血汗工厂”,这项工作和从业者被描述得廉价低质,人被重复性机械式的劳动异化。在王金桥的解释下,这一刻板印象也被逐渐打破。



        他直言,目前这种大量的人工标注是有价值的,因为理论上解决问题很难,但有了大量数据,设计深度学习网络,可以在特定场景特定应用中用数据训练神经网络,从而在很多场景中可以让AI快速落地占领市场、驱动行业应用、促进行业升级和迭代。



        “比如在手机玻璃缺陷、高铁轨道的缺陷、电网高压线绝缘子损坏等检测工作中,无人机拍摄画面后,由人来检测,随着数据量增加,机器得到的训练越来越充分,机器慢慢可以自动检测,类似工作可以很大程度上由机器代劳。”王金桥说,目前人工智能的智能性虽然比较弱,但在各行各业都会带来改变,这是AI推动产业革命的机会。



数据标注需求持续增加



        “现在科研界研究的都是无监督、小样本的深度学习,通过三维合成数据,用虚实结合的数据生成方式来训练机器,尽量减少数据的采集和标注,让机器自主学习、自主进化。”王金桥说,但由于缺乏理论上的突破性技术,所以虽然技术增长速度很快,但整体水平还比较低,目前的深度学习还是依赖基于统计意义的大数据模型,这要求数据足够多、足够均衡、基本满足真实世界的分布。



        因此,标注这项工作会一直存在。



        但王金桥也表示,随着无监督、小样本深度学习的进步,重复性标注的工作量会越来越少。“机器的识别和人一样,人经过几千年的进化,用语言用文字记录和存储几千年的文明,所以看到桌子就知道是桌子,看到灵芝知道是灵芝。机器也需要不断理解更多的内容,有数据标签,它才能学习,才会有智能。数据的加工是一个长期存在的过程,由画框到基础词汇,慢慢形成自己的知识图谱,才能自我推理和思考。”



        目前的数据标注公司基本采取“计件付费”的模式,标注员的待遇与任务量和难度直接相关,熟练工一天能标几千张图片,月收入最高过万。这项工作也有一定专业性,受过培训才知道怎么标、标得清楚,人也要认真细心。“每天产生的数据量太大了,数据量持续增加,对标注的需求也持续增加。”王金桥说。



        据阿里巴巴集团副总裁、阿里巴巴人工智能实验室总经理陈丽娟介绍,贵州万山仅仅是一个起点,未来项目的整体规划将聚焦贫困地区,寻找更多更适合发展“AI标注”产业的地区来落地。同时,也希望更多的人工智能企业加入,把AI标注的订单定向输送给贫困地区,为贫困群众提供更多就业机会。陈丽娟说。



延伸阅读



        AI数据服务发展新方向:细分化、多模态、专业化



        数据表明,当前AI发展出现了细分化、多模态以及专业化三大特征。相应的,新变化对于AI数据服务行业也形成了一定的影响与方向指引。



        当前AI已经进入技术落地阶段,应用场景涉及安防、金融、家居、交通等各大行业。而未来,在数据标注行业,从业者也将随着AI行业而一同进入细分市场追逐阶段。



        同时多模态也成为了AI技术发展的一个特征。所谓多模态,即是对多维时间、空间、环境数据的感知与融合。如当前的自动驾驶需要雷达+摄像头才能跑的更稳,安防行业需要摄像头+雷达红外RFID才能感知得更精准、更真实。而在数据服务产业,企业也需要适应AI技术发展的多模态特征,掌握对多维传感器融合的数据采集与标注。



        此外,尽管当前AI技术已经进入落地阶段,但是头部AI企业的落地场景相较传统行业的AI落地场景,在技术上会更有前沿性。而这些企业的一些先进技术研究也很有可能成为未来数据服务行业的一大发展方向,所以数据服务企业也需要在这些前沿场景中不断探索,才能在行业竞争中获得长期发展。(来源:环球网)




推荐文章

2、标注规范 ——共3项(文本、无效、性别)  注: 文本正确率:95%     其它(无效+性别)正确率:95% 注:一定不要多字、漏字!!2.1性别类别分类定义男性别女童声童声指小孩非常稚嫩的声音,大概是在5岁以下的范围。大孩子的声音归到男女。其他没有人声,或者男女混声的统一规为其他 注:女生之间的对话性别是女,男生同理;只有男女相混的对话是其他2.2判断是否为无效语音无效:1、主体人声音的前面、或后面、或中间:有一段安静或噪声等非人声 ,长度在2秒以上(宽条是0.3秒)。【注意整句无人声的不是无效】2、声音是转格式转错的。无效语音,直接打勾,文本不用修改。3.全英文的句子听不懂标无效有效:其它都是有效 2.3修改文本标注文本,目的是把耳朵听到的“普通话或带口音的普通话”标成普通话文本,严重听不懂的“方言”,可标注#2.3.1标注#的情况(1)听不懂、听不清的词或方言标注#(2)英语语句中,听懂的单词标注出来,听不懂的标注#(3)除英语外其他国语言标#,发音如“萨瓦迪卡”,“阿尼哈塞呦”等必须标#(4)粤语标注#(5)噪音标注#(6)遇到拼音标注#,如“阿啵呲嘚”等拼音(7)整句无人声,只有噪音,不超过2S的标#,如一个人整句咳嗽声 注:#可以代表一个字不清楚或者几个字不清楚;一句话中可以出现最多两个#,但不能 同时  ##  这种形式出现;最多可以 #文本# 这种形式出现;2.3.2姓名问题(1)姓:必须标注正确,确定是有这个姓(2)名字:名字可以打同音字 2.3.3地名问题(1)省市等较大地名必须查清楚,不能出现错字:如浙江省无锡宜兴市 (2)较小的地名,如村镇以及道路、小区等可标注同音字。 2.3.4数字问题(1)听到的阿拉伯数字写成汉字,如“一二三四五”或“幺二三四五” 2.3.5儿化音问题(1)带儿话音的,可以写出“(儿)”字,并且加括号;或者直接不打儿化音,皆可。例如:我得了5分儿,文本要写成:我得了五分(儿)/我得了五分注意:不是儿化的不用加,如女儿,婴儿等不是儿话,就不能加在“儿”字上加括号。 2.3.6语气词问题(1)注意口语的字:口语中,结结巴巴说出的,要写出对应接接巴巴声音的字。 (2)口语中,“嗯”、“哦”、“啊””等,要准确对应文本。例:声音“呀”,不能写成:“啊” 2.3.7英语相关问题(1)单词:英语单词,整个单词要小写。如“happy” (2)字母:说字母的写成字母,要写成大写。如“A  B  C  ”。注意:QQ、MSN,是字母发音,要写成大写。 注:英文单词发的不标准,如能听出是哪个单词,就写单词。整句都是英文句子的情况:l 一句话中发音不清楚的单词,标#,发音清楚的单词必须写出单词l 整句英文都听不清楚时,标为无效,不要整句标为#。l 英文用中文谐音写出来的,算错。如:black 写成 布莱克 算错l 一些地名,人名按英文读的,需要写英文,如:I am gonging to shanghai  不能写成“上海”l 其他国语言,发音如“萨瓦迪卡”,“阿尼哈塞呦”等必须标#   2.3.8混音问题混音包括3类:1、当前电话通话的两个人同时说话,相混2、当前人声与较亮或尖锐的音乐声(如铃声、汽车喇叭)相混 混音部分的标注方法:(1)如果非主体人插话不影响对主体人说话的理解,标注员可以听出主体人说话的字,则要求写字。(不要出现一个音对应两个字)例如:非主体人插入的话,音量小、字数少,可忽略当成没听见。 (2)如果非主体人插话,造成标注员已听不出主体人混音部分的字,则要求混音部分标#。 例如:非主体人插入的话,由于音量过大相混在一起,听不清主体的话,混的部分写#。 (3)如果音乐声相混,不影响对主体人说话的理解,标注员可以听出主体人说话的字,则要求写字。如果音乐声相混,造成标注员已听不出主体人混音部分的字,则要求混音部分标#。3:增加#的情况l 人声中出现突然间的大噪音且与人声不相混,包括铃声、叮声、咳嗽、扑话筒、有大的音乐背景等,写1个#。l 人声前边或后面出现一片乱乱的小声说话、持续的背景噪音,写#和不写#都可以。注意:安静的静音处,不能写#。  2.3.9 标注页面蓝条与黄条使用 蓝条和黄条的功能有3个:(1)尺子,表示0.3秒,可以用于量取2秒判断无效。(2)选中功能。选中的是播放蓝条最左端到黄条最右端的声音。当语速特别快时,建议分段选中去听,写下文本,正确率会提高。(3)确定#在哪儿出现。   标准普通话与带口音的普通话对照表:类别定义特例举例说明无口音拼音、声调都正确轻口音拼音对,声调不对n和l不分;n和ng不分;z/c/s和zh/ch/sh不分属于轻口音那个,发音:la4 ge5(标准na4 ge5 )电信,发音:dian4 xing4(标准dian4 xin4)平时,发音:pin2 shi2(标准ping2 shi2)政治,发音:zeng4 zi4(标准zheng4 zhi4)刚才,发音:gang1 chai2(标准gang1 cai2)重口音拼音不对(n和l不分;n和ng不分;z/c/s和zh/ch/sh不分)除外湖南,发音是 fu2 nan2(标准hu2 nan2)歌曲,发音是guo1 qu3(标准ge1 qu3) 

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。