从乔布斯、马斯克到人工智能,AI带给我们的启发

活了这么久,我领悟到一个道理,就是我们总是无法随心所欲。怎么才算随心所欲,让世界没有秘密?这是电影《黑客帝国》的一段话。

世界变化得越来越快,而我们好像来不及反应。

如果没有互联网时代的到来,也许就没有《黑客帝国》这样的电影呈现。突然想写写这个时代的核心科技天才人物,给我们带来的科技变化。

传大的领导者都是伟大的学习者。

牛津大学研究人员先前在美国和英国进行研究显示,美国可能被机器人取代的职位比例为47%,英国为35%,中国为77%,日本为49%。

随着智能时代的到来,我们也开始对自己所属的行业工种产生新的审视,你现在所做的工作有没有可能在不久的将来变成机器自动化,让机器人取代,而我们要选择什么样的工作才能保证没有危机感,现在不光是人与人竞争。还有与这个大时代科技带来的创新的竞争。

工业时代最大的收获就是“执行力”而执行力务必是执行,按着一条条命令去严谨完成即可,他不需要你有过多的大脑分析,而只需要思考如何执行到位。

智能时代有可能将这种需要人工去执行的工种用自动化取代,而人们需要更多的是要有引领思维。

未来已来。

这就会逼着我们在很多行为上面做一些改变,看了一些关于马斯克和乔布斯的书,他们2个非常相似,喜欢设计,喜欢控制,追求细节上的完美极致。无论是乔布斯在设计手机上面的美学,还是马斯克发射火箭,都是在细节上达到了百分百,执行细节的苛刻,都贯彻到了骨子里。

关键是这样的大师级人物不论是从事哪一个行业都会十分出色,他们身上有一种多元化思考与实践,按现在的理解来说就是跨界奇才。

大师级人物,从来不拥有专业身份。马斯克是科学家、企业家、思想家,他的专业知识覆盖了火箭、工程学、物理学、人工智能、太阳动能源等学科领域,思想表达又像哲学家一样深刻而透彻。

马斯克的跨界能力来自超级阅读力。知识达到一定程度就是可以连接自动实现跨界并很好的运用。

乔布斯主张专注和简单。简单可能比复杂列难做到,你必须努力梳理思路,从而变得简单。苹果手机的设计界面,一开始黑白2种颜色整个界面只有一个开机键,真是少而简到了极致。

生活中的乔布斯,素食、禅修,冥想,样样都不是停留在语言上,他是在用真实的生活去参与感受,而不是停留在遵守各种宗教教条。

有趣的是乔布斯和马斯克在公司管理上面都很“暴力”,私下都被誉为“暴君”乔布斯最让员工可怕的是冷漠,而马斯克有点轻微的岐视智商不高的人。乔布斯不相信上帝,而马斯克是个连上帝都不愿意等待的人,他们都有着自己的追求和精神领空,在他们的世界中,所有人必须无条件的配合他们的指令。

暴君们只对待出色的人友好。实际上亚马逊的创始人贝索斯也是被员工认为很冷漠的人,在亚马逊任职十几年的管理人员说"贝索斯不是那种人,他不能容忍愚蠢,即使是偶然的愚蠢”。

无一例外,这些科技大佬们,都是从事自己热爱的事业,精力十足,并都有点偏执狂特质。在阅读这些人物自传时,也就理解了世界第一首富约翰·洛克菲勒写的《只有偏执狂才能成功》,还有安迪.格鲁夫写的《只有偏执狂才能生存》,看来偏执也是一种力量。

人工智能的出现与发展预示着世界上90%的人类工作将由机器人完成,未来穷人对富人和权力阶层的利用价值将逐渐消失,城市中心的住宅会变得低廉,能源采集来自光和风...人类从设计自己的生活,将逐渐升级为自我设计,新技术会赋予人们前所未有的能力。这是《人类简史》·赫拉利中的描写。

我们在享受着这些偏执狂一样的大佬们带给我们的科技感,同时也要思索自己对于社会的贡献在哪里,有没有可能被取代,如何让自己立足于不可取代的位置,随着人工智能的到来我相信这是每一个职场人士都会要去思考的问题。

如果人工智能真的来临,我们是否做好了准备,在从事被取代工种的我们又该何去何从呢。

2020年是沉重又特殊的一年,这一年发生了太多不寻常的事情,我想这场全世界的疫情会给我们每一个人不同的感受,让我们放慢了脚步,让我们学了会敬畏,学会了审视自己。但是不管怎样,我们还是要着眼未来,用发展的眼光看待2021年,更好的理解人工智能带来的启发。

2017年应该是人工智能最火的一年。智能家居、智能工厂、智能语音等。

我们试想一下如果人工智能用在中国的农业上是怎么样的效果。

美国是一个农业大国,通过视频可以了解到,他们工人在农场作业时用机器取代工人,一般一到三个人就可以管理好一个宠大的农场,在节省人工成本的同时经济收益得到了几百倍的增长。整个农场运作都是程序化的,按程序去操作即可。

如果人工智能用到我们的农业,智能化农业科研、生产、加工、销售于一体,实现全天候,反季节的系统化生产,这样增加了生产规模提高了生产基数,会不会降低普通人的生活购买成本,当然这只是我个人的小小想法,真正实现起来需要一些时间。不过在日本和美国已经有了显著成效。

另外,随着国内人口红利的消失,人工机器人的发展也可以很有效的拉动传统产业,补充劳动缺口。

人工智能会给我们带来什么样的启发呢,随着人工智能的到来,技术也就越来越被重视,参与到学习各种技术的人员会更多。智能设备与人类融合,通过数据会参与到我们的学习、记忆、分析和理解能力,甚至有可能会参与我们最后的判断与决定。

未来10年中,人工智能将会从以下方面改变我们的生活。

1、人工智能将成为更好的个人助理。如苹果手机Siri等 私人助理让很多人养成与设备对话的习惯,减少触碰屏幕的时间。除了提醒功能和进行网络搜索外,私人助理在家居领域也会有一番作为。通过软件语音可以打开或关闭家里的家用电器设备。

2、人工智能将能在危机来临时处理海量信息。

3、机器人将能互相沟通,并制定计划。这个场景可能需要实现的时间会相当长。

4、人工智能将能提前做出医疗预测。

5、无人驾驶汽车将能自行做出判断。现在的无人驾驶很难做出汽车面临一个两难选择的伦理判断,可能需要10年的时间研究。

6、刷脸成为普遍的识别方式,除了刷卡,刷手机,可能在登机、观影、登录邮箱等都可以利用人脸识别系统。

7、智能语音识别。

人工智能技术会对传统行业产生颠覆性影响,在国防、医疗、工业、农业、金融、商业、教育、公共安全等领域取得广泛使用,也将会产生新的业态和商业机会,引发产业结构的变革。

目前国内做得好的人工智能就是人脸识别和网络安全,坐飞机和高铁还有支付的时候,就感觉人脸识别很方便,但是其它方面的人工智能可能因为本人认知有限,并没有太多体会到。

相信不久的将来,人工智能会改变我们的生活,想想互联网红利期带给我们在交通支付购物点餐等生活服务中的众多便利,就更加期待人工智能的早点到来。

人类文明的永恒主题一直是“自由”,制度自由、经济自由、思想自由、空间自由、即便财富的魔力本质依然是自由。希望人工智能的到来,能加速让我们体会到这无限的自由。


推荐文章

新兴的数据标注行业遍布全球,全世界人都在为人工智能打工!
AI的新员工:数据标注行业遍及全球 在印度和菲律宾等低收入国家工作的数十万人 数据注释公司iMerit在印度加尔各答的办公室员工。随着公司越来越接受人工智能,新兴行业正在兴起,在该行业中,员工被用来“训练”算法以识别各种类型的数据 ,马达胡米塔·穆尔吉亚(Madhumita Murgia) JULY 24 2019 打印此页 26 在印度城市加尔各答的边缘,在拥挤不堪的梅蒂亚布鲁兹(Metiabruz)居民区,有460名年轻妇女在人工智能的先锋队伍中工作。 这些女性,主要来自当地的穆斯林社区,正在帮助培训诸如亚马逊,微软,eBay和TripAdvisor之类的自动驾驶汽车和增强现实系统中使用的计算机视觉算法。  全女性中心是由印度和美国的数据标注公司iMerit运营的八个印度办事处之一,其2200名本地员工为制造业,医学成像,自动驾驶,零售等行业产生的数据海洋贴上标签,保险和农业。 该业务是不断发展的数据标签行业的一部分,该行业在肯尼亚,印度和菲律宾等低收入国家雇用数十万名工人。 如图8和Mighty AI之类的公司,以及埃森哲和Wipro等更传统的IT公司,正在组成所谓的“ AI供应链”,该供应链创建的算法能够解释包括驾驶镜头,搜索结果和照片在内的资料。美国和欧洲最大的跨国公司,包括Facebook,大众汽车和Google。 如今,公司正在拥抱人工智能,将其作为自动化决策和帮助创造新商机的一种方式。挑战在于,支撑该技术的算法像新生事物一样幼稚。他们需要喂给他们数百万个带有标签的示例,以教会他们“看”。  内罗毕的旧金山数据标签供应商Samasource的工人©Fredrik Lerneryd / FT 若要教授自动驾驶汽车算法的路标含义,或分辨孩子和狐狸之间的区别,则必须逐帧观看数小时的镜头并标记物体。一个小时的视频需要八个小时才能注释。事实上,麦肯锡(McKinsey)在2018年发布的一份报告中将数据标签列为工业界采用AI的最大障碍。 根据分析公司Cognilytica于2019年1月发布的报告,第三方数据标签解决方案的市场在2018年为1.5亿美元,到2023年将增长到超过10亿美元。“最大的技术公司不愿与培训数据,他们希望拥有客户关系[并且]明智地使用合作伙伴和采购,”位于旧金山的数据标签供应商Samasource的创始人兼首席执行官Leila Janah说道,该公司在肯尼亚,乌干达和美国设有办事处。 “但这就是为什么围绕道德的AI供应链进行对话如此重要的原因。在它开始走出他们的四面墙之前,我们必须确保我们设定了标准,而且这个市场不会阻碍服装工厂的发展。有巨大的机会来确保这个(标签)行业是一个积极的力量。”  新员工 当大型跨国公司开始为消费产品开发机器学习算法时,数据标签要么通过亚马逊的Mechanical Turk之类的众包平台提供给零工,要么由低薪经济体的工人团队内部进行。萨拉·罗伯茨(Sarah T Roberts)等研究人员对像美国这样的国家的数十名科技工作者进行了采访,他们认为,与同公司的其他员工相比,这些承包商的工资通常被严重低估,而他们的工作却被视为卑鄙的。菲律宾的“屏幕背后”一书。 Samasource的创始人兼首席执行官Leila Janah©Fredrik Lerneryd / FT 随着需要贴标签的数据量呈指数级增长,大公司越来越多地转向第三方,这些第三方能够为专门提供特定类型数据(例如驾驶或医疗信息)的工人提供服务,并且他们也以道德的方式得到报酬和待遇。 Samasource的员工为沃尔玛,谷歌,微软,Glassdoor,大陆和通用汽车等公司提供数据标签,其总部位于内罗毕,拥有2800多名员工。“我们有一种劳动模式,雇用人们作为全职工人,并以生活工资支付福利。  平均而言,(当我们雇用他们时)我们的工人收入几乎翻了两番。”贾纳女士说。“我们与通常来自非正式定居点,乡村的人口一起工作,因此有机会获得一份高薪的工作,并为您提供计算机技能并使您接触AI,这意味着人们对此非常重视。” iMerit在加尔各答附近的全女性培训机构已成为计算机视觉标签的专业中心,该公司总体上雇用了50%的女性劳动力,其中大部分来自印度的低收入家庭。“这是一个不允许妇女出差去其他地方工作的社区。因此,我们开始为他们带来项目。” iMerit首席执行官Radha Basu说。 人为因素 人工智能供应链公司坚持认为,他们的工作不再涉及对猫,狗和房屋等基本物体的盲目,死记硬背的标签,而是已经演变成更加专业化的任务集。 例如,iMerit员工可能会分析驾驶员的车载录像,包括面部表情和眨眼,以确定驾驶员的疲劳程度;巴苏女士说,他们已经为亚马逊的Echo扬声器培训了语音剪辑,以理解语言并分析了单个建筑物和建筑工地的卫星图像,从而为保险公司培训了风险评估算法。 iMerit在加尔各答的工人 Samasource在Bayer的一个项目上工作,该项目要求注释植物的血管横截面以检测病害细胞以保护作物,并训练空中图像算法。Janah女士解释说:“我们希望专注于机器无法轻易掌握的复杂边缘情况,在这些情况下您需要人工来提供细微差别和判断力。那就是我们增加价值的地方。” 随着AI培训市场开始爆炸式增长,使用AI的西方团体正在寻求与具有社会影响力模型的更多道德外包公司合作。“人们第一次质疑那些不为AI供应链中的工人提供生活工资的[标签]公司。作为一家公司,如果您要让这些劳动者对您的数据进行培训,则应归功于他们对这些劳动者的公平对待,”贾纳女士说。 巴苏女士说:“从长远来看,这些年轻的农村部落工人将真正改变其社区的经济能力。西方来自谷歌

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。