从乔布斯、马斯克到人工智能,AI带给我们的启发

活了这么久,我领悟到一个道理,就是我们总是无法随心所欲。怎么才算随心所欲,让世界没有秘密?这是电影《黑客帝国》的一段话。

世界变化得越来越快,而我们好像来不及反应。

如果没有互联网时代的到来,也许就没有《黑客帝国》这样的电影呈现。突然想写写这个时代的核心科技天才人物,给我们带来的科技变化。

传大的领导者都是伟大的学习者。

牛津大学研究人员先前在美国和英国进行研究显示,美国可能被机器人取代的职位比例为47%,英国为35%,中国为77%,日本为49%。

随着智能时代的到来,我们也开始对自己所属的行业工种产生新的审视,你现在所做的工作有没有可能在不久的将来变成机器自动化,让机器人取代,而我们要选择什么样的工作才能保证没有危机感,现在不光是人与人竞争。还有与这个大时代科技带来的创新的竞争。

工业时代最大的收获就是“执行力”而执行力务必是执行,按着一条条命令去严谨完成即可,他不需要你有过多的大脑分析,而只需要思考如何执行到位。

智能时代有可能将这种需要人工去执行的工种用自动化取代,而人们需要更多的是要有引领思维。

未来已来。

这就会逼着我们在很多行为上面做一些改变,看了一些关于马斯克和乔布斯的书,他们2个非常相似,喜欢设计,喜欢控制,追求细节上的完美极致。无论是乔布斯在设计手机上面的美学,还是马斯克发射火箭,都是在细节上达到了百分百,执行细节的苛刻,都贯彻到了骨子里。

关键是这样的大师级人物不论是从事哪一个行业都会十分出色,他们身上有一种多元化思考与实践,按现在的理解来说就是跨界奇才。

大师级人物,从来不拥有专业身份。马斯克是科学家、企业家、思想家,他的专业知识覆盖了火箭、工程学、物理学、人工智能、太阳动能源等学科领域,思想表达又像哲学家一样深刻而透彻。

马斯克的跨界能力来自超级阅读力。知识达到一定程度就是可以连接自动实现跨界并很好的运用。

乔布斯主张专注和简单。简单可能比复杂列难做到,你必须努力梳理思路,从而变得简单。苹果手机的设计界面,一开始黑白2种颜色整个界面只有一个开机键,真是少而简到了极致。

生活中的乔布斯,素食、禅修,冥想,样样都不是停留在语言上,他是在用真实的生活去参与感受,而不是停留在遵守各种宗教教条。

有趣的是乔布斯和马斯克在公司管理上面都很“暴力”,私下都被誉为“暴君”乔布斯最让员工可怕的是冷漠,而马斯克有点轻微的岐视智商不高的人。乔布斯不相信上帝,而马斯克是个连上帝都不愿意等待的人,他们都有着自己的追求和精神领空,在他们的世界中,所有人必须无条件的配合他们的指令。

暴君们只对待出色的人友好。实际上亚马逊的创始人贝索斯也是被员工认为很冷漠的人,在亚马逊任职十几年的管理人员说"贝索斯不是那种人,他不能容忍愚蠢,即使是偶然的愚蠢”。

无一例外,这些科技大佬们,都是从事自己热爱的事业,精力十足,并都有点偏执狂特质。在阅读这些人物自传时,也就理解了世界第一首富约翰·洛克菲勒写的《只有偏执狂才能成功》,还有安迪.格鲁夫写的《只有偏执狂才能生存》,看来偏执也是一种力量。

人工智能的出现与发展预示着世界上90%的人类工作将由机器人完成,未来穷人对富人和权力阶层的利用价值将逐渐消失,城市中心的住宅会变得低廉,能源采集来自光和风...人类从设计自己的生活,将逐渐升级为自我设计,新技术会赋予人们前所未有的能力。这是《人类简史》·赫拉利中的描写。

我们在享受着这些偏执狂一样的大佬们带给我们的科技感,同时也要思索自己对于社会的贡献在哪里,有没有可能被取代,如何让自己立足于不可取代的位置,随着人工智能的到来我相信这是每一个职场人士都会要去思考的问题。

如果人工智能真的来临,我们是否做好了准备,在从事被取代工种的我们又该何去何从呢。

2020年是沉重又特殊的一年,这一年发生了太多不寻常的事情,我想这场全世界的疫情会给我们每一个人不同的感受,让我们放慢了脚步,让我们学了会敬畏,学会了审视自己。但是不管怎样,我们还是要着眼未来,用发展的眼光看待2021年,更好的理解人工智能带来的启发。

2017年应该是人工智能最火的一年。智能家居、智能工厂、智能语音等。

我们试想一下如果人工智能用在中国的农业上是怎么样的效果。

美国是一个农业大国,通过视频可以了解到,他们工人在农场作业时用机器取代工人,一般一到三个人就可以管理好一个宠大的农场,在节省人工成本的同时经济收益得到了几百倍的增长。整个农场运作都是程序化的,按程序去操作即可。

如果人工智能用到我们的农业,智能化农业科研、生产、加工、销售于一体,实现全天候,反季节的系统化生产,这样增加了生产规模提高了生产基数,会不会降低普通人的生活购买成本,当然这只是我个人的小小想法,真正实现起来需要一些时间。不过在日本和美国已经有了显著成效。

另外,随着国内人口红利的消失,人工机器人的发展也可以很有效的拉动传统产业,补充劳动缺口。

人工智能会给我们带来什么样的启发呢,随着人工智能的到来,技术也就越来越被重视,参与到学习各种技术的人员会更多。智能设备与人类融合,通过数据会参与到我们的学习、记忆、分析和理解能力,甚至有可能会参与我们最后的判断与决定。

未来10年中,人工智能将会从以下方面改变我们的生活。

1、人工智能将成为更好的个人助理。如苹果手机Siri等 私人助理让很多人养成与设备对话的习惯,减少触碰屏幕的时间。除了提醒功能和进行网络搜索外,私人助理在家居领域也会有一番作为。通过软件语音可以打开或关闭家里的家用电器设备。

2、人工智能将能在危机来临时处理海量信息。

3、机器人将能互相沟通,并制定计划。这个场景可能需要实现的时间会相当长。

4、人工智能将能提前做出医疗预测。

5、无人驾驶汽车将能自行做出判断。现在的无人驾驶很难做出汽车面临一个两难选择的伦理判断,可能需要10年的时间研究。

6、刷脸成为普遍的识别方式,除了刷卡,刷手机,可能在登机、观影、登录邮箱等都可以利用人脸识别系统。

7、智能语音识别。

人工智能技术会对传统行业产生颠覆性影响,在国防、医疗、工业、农业、金融、商业、教育、公共安全等领域取得广泛使用,也将会产生新的业态和商业机会,引发产业结构的变革。

目前国内做得好的人工智能就是人脸识别和网络安全,坐飞机和高铁还有支付的时候,就感觉人脸识别很方便,但是其它方面的人工智能可能因为本人认知有限,并没有太多体会到。

相信不久的将来,人工智能会改变我们的生活,想想互联网红利期带给我们在交通支付购物点餐等生活服务中的众多便利,就更加期待人工智能的早点到来。

人类文明的永恒主题一直是“自由”,制度自由、经济自由、思想自由、空间自由、即便财富的魔力本质依然是自由。希望人工智能的到来,能加速让我们体会到这无限的自由。


推荐文章

最近有很多研究提到,人工智能和自动化为主的技术进步,可能让女性就业受到比男性更大的冲击。不过更进一步查看的话,所有这些文章会将深层原因归结于,女性更少的从事科学、技术、工程和数学 (STEM) 方向的学习;说大白话,就是女性没有学会编程,不懂电脑技术。根据伦敦智库 IPPR 的研究,在自动化风险较高的行业中,近三分之二(64%)的英国工人是女性。这是因为众多女性从事的都是零售和行政工作,而这可以通过机器来完成。IPPR 说:“总的来说,1/10 的女工面临着被机器人替代的高风险。相比之下,只有 4% 的男性工人有同类风险。” [1]《金融时报》的文章指出,问题出在人们年轻的时候。高校 STEM 专业的学生约 65% 是男性。如果女性年轻时没有机会获得 STEM 相关学位,也就困于家务劳动和带孩子,而没有时间接受再培训。文章说,新兴经济体许多女性面临更大的困难,因为她们当中有很多人从事仅能维持生计的农业,几乎没有受过教育,也没有什么可转移的技能。[2]那么,为什么不直接说不会编程技能,或缺少编程思维的人更难找到工作呢?男人就没有这样对程序或基础科学一窍不通的吗?我对这个问题如此敏感,一个原因是我本人(男)就是与 STEM 无缘的典型案例。从小就喜欢计算机,却终究没学会编程在我上高中之初,有一次机会选择文理科分班,这也是中国特色的教育方法。因为我在的高中比较强的是理科,我就选了理科,可是两学期下来,数学只能考 30 多分,物理、化学、生物全面亮红灯。我对理科知识的唯一回忆,可能是刚上化学课的时候,问老师“石蕊(试纸)的化学式是什么”。没有答案,我只记住自己问了这个问题。所以,我不得不由高一时的理科班转到文科班,不然的话根本没办法正常的考试。在文科班,我高考的分数也相对好一点,只是因为更多死记硬背的部分,更适合那个时候的我。我深知考核标准的不同,会导致学生高考分数和社会评价的巨大差异。有人说,农村孩子吃亏就在于高考不考种地、爬树、捉蟋蟀。都不用这么麻烦,其实文理分班已经能区分很大一部分同学的未来路径——但对某方向本来就很感兴趣,自己知道想要什么的同学除外。我也知道自己有理科,也就是 STEM 学科方面的弱点。所以,即使我还没上学就用上了电脑,也把未来理想跟计算机捆绑在一起,却不能如愿以偿的从事程序员的工作;最后长大了,也不能由此转岗去做薪水更高,更稳定,前景也更好的编程行业,只能徘徊在电脑行业的边缘。这一直是我心中的一个结。工作这么多年,我一直想要有机会去尝试从零开始自学编程,甚至给小朋友做启蒙的那些书我也看过,看完都一头雾水。现在在三四线小城市,也经常出现人工智能和编程培训班的门脸,看了之后,除了更引起我被时代抛弃的焦虑之外,没有其他作用。我作为科技记者和撰稿人,在掌握新科技趋势方面,属于起了大早,赶了晚集。我们这些人应该处于整个科技食物链的比较靠下游的位置,最早知道了这些新闻和趋势,但除了写些文章或采访之外,几乎没有其他的方式可以妥善利用。结果,到了自己的工作受威胁的时候,宁可去卖保险。这更多的是属于个人能力、兴趣偏好的问题,这根本就不是男女差异。社会上没有一人一朵的“小红花”我知道,如果我不能及时转到文科班的话,如果全校所有的同学都在理科班,甚至根本就没有文科,没有非 STEM 学科,那么我可能只是一个天资更加平庸的,成绩更差的理科生。在单一维度的评价体系里,我会比现在惨的多。所以我说不上由理转文这件事,对我的人生是好是坏。从结果上看,我生存在社会尚且可以公平对待 STEM 和非 STEM 学科的时代,还是一件好事。但是这其实更让我深刻领会到,未来继续保持这种评价体系和工作类型的多样化,对于我们这个社会的意义。社会全面偏向 STEM 意味着我们的教育方针要做 180 度的大转弯,也不会存在什么“因材施教”的空间,这个问题是如此的严重,现在业界可能还没有充分的意识到问题的严重性。分析人士只是笼统的说,人工智能虽然取消了很多岗位,但还可以创造更多岗位。想想工业革命!那些手工业者一开始破坏机器,搞卢德运动,但最后工人阶级还是站起来了。不妨想想幼儿园和小学课堂里的“小红花”。用宽松的,素质教育的方法,老师就会说,班上每一个孩子都有闪光点,即使学习成绩不好,也有其他的评判标准。如果出于孩子心理健康的考虑,给每个孩子单独设立一个评价体系的话,那么所有人都有小红花,最笨最没人缘的孩子也可以是“系鞋带最整齐的孩子”这样。这在学校里当然是成立的,走入现实可就不适用了。本来,文史类学科和相关工作,以及程序化,缺乏创造力的工作,意味着“系鞋带最整齐的孩子”也有社会上对应的位置。但如果说 AI 和自动化将替代的岗位是差不多全部非 STEM 行业,那就意味着全社会至少有一半曾经能够稳定就业的人,一瞬间不再适合在地球上生存。原来能够给他们稳定收入和正面评价的行业,现在却露出冰冷的面孔。他们原来曾经学会的那些适应社会的习惯和能力,将会不再被人提起,连被评为非物质文化遗产的机会都没有。培训和救济,似乎都很困难前述智库给出的意见一般都是与福利、补贴和再教育相关。比如,IPPR 报告作者建议政府引入新的法律,给女性分配工作,开展高技能工作培训,提高最低工资标准等。FT 的文章同样建议企业和社会推出举措,鼓励女孩学习 STEM 学科,发展编程技能。“不是每个人都需要成为一名程序员,但好的工作将越来越意味着与技术打交道。”然而,这些文章所指出的理想状态,假设了女性(或其它 STEM 门外汉)只要经过培训,就都能达到一定标准。而不论男女,总有缺乏这方面天赋的人存在——比如我自己。即使对他们进行失业的相关培训,也将会是困难重重的,因为如果他们真的掌握逻辑思维的能力,掌握学习数学的好方法,他们不是早就去做了吗?甚至他们连去参加培训的完整时间都不具备。有人说,重复劳动类的劳动力,如果不会 STEM,可以做数据标注工人嘛。但是这样的标注,也是建立在个人隐私以及数据集可以被随意使用的草莽年代,建立在所谓“用隐私换便利”的时候。受到社会制约的 AI 企业,将更倾向于用小的数据集,用压缩算法,最终达到能在用户个体的终端上,离线完成 AI 运算。当数据使用量减少的时候,数据标记工人只是会更快的迎来下一次失业。我们再说说救济。现在,国家规定对公司招募残疾人、特定少数民族、退伍军人等执行补贴,这是在直接聘用他们会削弱企业市场竞争力的前提下,采取的平衡手段。将来,这个巨大的救济包袱还会更重,因为以前能够自食其力的流水线组装工人、收银员、话务员等岗位都要归入救济队伍,他们本来应该是供养养老金的有生力量。福利的池水被加速抽干,每一个人分摊到的福利金额都会下降。社会在考虑自动化新技术与就业的连带关系的时候,不能偷懒的只算工作总量和总失业率,因为这不是冷冰冰的数字,而是一个个具体的人,以及他们背后的家庭。受影响的人当中,有多少人或者因为信息不对称,自己都没有察觉到,或者想到了,也因为没有天赋,没有兴趣或者没有财力精力,而只能默默的滑落下去。我理解,一些研究者先假设不会 STEM 的都是女性,毕竟“女生学文科的多”,然后再跟性别话题挂钩,来引起人们注意。这是一种非常讨巧的尝试,可以利用现在风头正劲的女权思潮,利用她们强大的舆论动员力,来实现对自动化社会议题的关注。但这实际上会模糊问题的焦点,并且使得跟他们所说的“女性”实质上具有同等问题的男人,更得不到关注,沦落为无人问津的“夹心层”。结论一个更自动化的社会,会显著的减少对一般人类劳动力的需求。在人类各种能力中,偏向创造力、想象力、沟通交流能力,以及控制机器的能力的一面会被更突出强调。可惜的是,人类固有的缺陷——也可能是优势——就是,创意方面最强大的能力,往往只集中于极少数天赋异禀的英才手中。相比之下,一旦某个机器学会一个能力,它的任意一个复制品,都会一瞬间具备同样的能力。也就是说,至少在教育方面,想要让人们往找到工作的方向走,依靠非标准化的非 STEM (“文科”)培训很难,而 STEM(“理科”)方向则较为容易。这将不可挽回地导向全社会只重视 STEM 的单一评价标准,更多人将被判为不合格,没有能力赚到维持生活的钱。要么继续思考怎么培训他们,要么就改变分配方式,比如给全民派钱什么的——这样的思考和讨论,已经到了非进行不可的时候。 

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。