广州财校成立“兆禾兴财务数据标注班”动员会

4月24日下午,广州市财经职业学校(以下简称“财校”)财务会计教学部在太和校区举行了成立“兆禾兴财务数据标注班”动员大会。出席此次动员大会的有广州市兆禾兴信息咨询有限公司单位负责人郭经理、陈主管,财务会计教学部余国艳主任、周燕飞老师,招生就业指导科袁志勇老师以及17级会计专业及会计电算化专业的学生,动员会由余国艳主任主持。

首先,余主任向学生们介绍了本次到会的企业代表和参会老师;“兆禾兴财务数据标注班”成班以及授课方式,课程将全程由企业专家、能工巧匠授课;学生们可以在企业师傅的指导下学习和实践,学会并熟练掌握利用互联网,搜集、挖掘、分析财务金融数据的能力,全面提升学生的实际操作财务报表、金融报表能力和必需具备的基本技能,最大限度的与社会、企业对接。

接着,兆禾兴信息咨询有限公司郭经理介绍了公司发展情况。兆禾兴公司在全国范围内的市场研究业务涉及耐用消费品零售数据调查、消费者调查和专项研究,并服务于众多跨国的大型产品制造商及零售连锁企业,成为国际著名企业的长期战略合作伙伴。该公司在整个华南地区数据系统的铺设始于1999年,经过近二十载的辛勤付出和努力,至今已覆盖90多个城市、县、镇区,样本商店更超过2700家,涉及生活和工作中的耐用消费品高达58种产品。 

郭经理用风趣幽默、通俗易懂的语言深入浅出地介绍了在高速发展的信息化时代背景下“财务金融大数据挖掘”的信息收集方法、企业大数据人才需求、大数据个人职业发展、行业发展潜力。财校生通过在“兆禾兴财务数据标注班”学习和实践,能够初步掌握大数据挖掘技能。 

参加动员会的学生们对数据挖掘的方法与意义表现出极大的兴趣与好奇,纷纷与企业专家郭经理进行互动,郭经理谦和耐心地回答了学生的有关问题。并鼓励有兴趣学习该项技能的同学加入财务数据标准班,并表示欢迎表现优秀的学子到该公司顶岗实习。 

最后,在报名环节有103位学生拟报名参加财务数据标注班。财务会计教学部将通过班主任以及任课老师推荐,挑选出40名学生参加该班学习。大数据时代下,会计人才需要用新的思维方式对待数据分析和交易处理,利用各种数据及信息技术,实现流程任务自动化、智能化,支持管理决策,获取洞察,指导行动,最终创造价值。

本文来自大洋网



推荐文章

        任何一家为人工智能企业提供数据标注服务的公司都离不开“数据标注员”这样的角色。毕竟人类的认知一直领先于机器智慧一段距离,目前的AI还无法胜任数据标注员的工作,机器学习依赖人类“喂食”,而填饱机器的“美味佳肴”则需要标注员们对数据的加工....        据行业市井,截止2018年在中国就已经有超过10万的全职数据标注员,以及超过100万的兼职数据标注员。看到这个庞大的行业人群数据,很多人都禁不住想问数据标注到底是一个怎样的行业?其实早在1998年第一家标注公司成立的时候,该行业就已经出现,只是那时人工智能尚未兴起,数据应用相对较少,直到2011年以后针对人工智能的数据标注才逐渐出现。人工智能行业离不开数据标注行业。为什么这么说呢?因为对于人工智能企业来说,优质的数据是不可或缺的。换而言之,数据的真正价值不在于数据本身,而在于数据背后所反映出的真实性与科学性。能够对数据进行分析、开发和利用,从中创造新的价值,取得实际应用效果这才实现了数据的价值,而数据标注就是体现数据价值的过程。最初,由于数据标注的需求量不是太多,基本是由公司内部的工程师或者算法团队自己完成。但随着人工智能的广泛应用和普及,机器学习的不断深入,对数据的需求与日俱增,那大量的数据从何而来呢?于是专业的数据标注员产生了。数据标注员相当于互联网上的“编辑师”,用一些数据标注工具,对大量文本、图片、语音、视频等数据进行归类、整理、纠错和批注等工作。在大数据时代下,各行业都面临着新的机遇与挑战,作为与人工智能密切相关的数据标注行业更是如此。关于数据标注行业还有更多未知等待我们去探索。

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。