广州财校成立“兆禾兴财务数据标注班”动员会

4月24日下午,广州市财经职业学校(以下简称“财校”)财务会计教学部在太和校区举行了成立“兆禾兴财务数据标注班”动员大会。出席此次动员大会的有广州市兆禾兴信息咨询有限公司单位负责人郭经理、陈主管,财务会计教学部余国艳主任、周燕飞老师,招生就业指导科袁志勇老师以及17级会计专业及会计电算化专业的学生,动员会由余国艳主任主持。

首先,余主任向学生们介绍了本次到会的企业代表和参会老师;“兆禾兴财务数据标注班”成班以及授课方式,课程将全程由企业专家、能工巧匠授课;学生们可以在企业师傅的指导下学习和实践,学会并熟练掌握利用互联网,搜集、挖掘、分析财务金融数据的能力,全面提升学生的实际操作财务报表、金融报表能力和必需具备的基本技能,最大限度的与社会、企业对接。

接着,兆禾兴信息咨询有限公司郭经理介绍了公司发展情况。兆禾兴公司在全国范围内的市场研究业务涉及耐用消费品零售数据调查、消费者调查和专项研究,并服务于众多跨国的大型产品制造商及零售连锁企业,成为国际著名企业的长期战略合作伙伴。该公司在整个华南地区数据系统的铺设始于1999年,经过近二十载的辛勤付出和努力,至今已覆盖90多个城市、县、镇区,样本商店更超过2700家,涉及生活和工作中的耐用消费品高达58种产品。 

郭经理用风趣幽默、通俗易懂的语言深入浅出地介绍了在高速发展的信息化时代背景下“财务金融大数据挖掘”的信息收集方法、企业大数据人才需求、大数据个人职业发展、行业发展潜力。财校生通过在“兆禾兴财务数据标注班”学习和实践,能够初步掌握大数据挖掘技能。 

参加动员会的学生们对数据挖掘的方法与意义表现出极大的兴趣与好奇,纷纷与企业专家郭经理进行互动,郭经理谦和耐心地回答了学生的有关问题。并鼓励有兴趣学习该项技能的同学加入财务数据标准班,并表示欢迎表现优秀的学子到该公司顶岗实习。 

最后,在报名环节有103位学生拟报名参加财务数据标注班。财务会计教学部将通过班主任以及任课老师推荐,挑选出40名学生参加该班学习。大数据时代下,会计人才需要用新的思维方式对待数据分析和交易处理,利用各种数据及信息技术,实现流程任务自动化、智能化,支持管理决策,获取洞察,指导行动,最终创造价值。

本文来自大洋网



推荐文章

之前“重庆公交车坠河”事件引起了全国人民的关注,使得交通安全问题再度成为公众关注的热点话题。小喵也针对交通事故做了调查,结果真是触目惊心。2016年全国交通事故发生总数达到212846起,造成226430人受伤,63093万人死亡,竟然同冰岛的全国人口数相当。在这些冰冷的数据背后,是一条条鲜活的生命,有效保障人民的交通安全,成为所有人的共同愿景。 在这些交通事故中,有很大一部分为疲劳驾驶、开车“低头族”造成的。疲劳驾驶状态下,驾驶员闭眼的1秒,事故率陡然升高;“低头族”看一眼微信的2秒内,可能就终结了一个人的生命。国家也出台了相关法规整治酒后驾车与开车“低头族”的问题,但是由此引发的事故仍旧屡见不鲜,提出更加高效的解决办法就显得更加迫切了。 科技的进步推动着社会的发展,前些年开始流行的“互联网+”为人们的生活提供了极大的便利,而近年开始成为热点的人工智能又开始同产业结合,改变人们的生活。就安全驾驶的问题而言,驾驶检测系统在AI的大背景下应运而生,改变着每个驾驶员的生命之路。 安全驾驶检测系统,是基于对各类交通图片数据的识别,通过深度学习,实现智能的对安全驾驶进行提醒与警告。其功能包括行人碰撞预警、前车碰撞预警、车道偏离预警、疲劳驾驶检测、盲区检测预警、夜视辅助系统等诸多功能,来保证驾驶安全。 行人碰撞预警系统(Pedestrian Collision Warning),基于计算机视觉的图像算法,检测行驶车道上静态和动态的行人,提前预警,防止行人碰撞事故的发生。 前车碰撞预警系统(Forward Collision Warning),它通过感应和计算在行驶过程中车辆与前车的距离来判断潜在的碰撞风险,并立即发出警示。 车道偏离预警(Lane Departure Warning),通过ADAS算法监测车辆在车道中的位置,当车辆压线或者即将压线时向司机发出警告,防止因车道偏离造成的交通事故发生。 疲劳驾驶监测(Driver Fatigue Monitor),通过视觉传感器对人的眼睑眼球的几何特征和动作特征、眼睛的凝视角度及其动态变化、头部位置和方向的变化等进行实时检测和测量,对疲劳驾驶行为进行预警。 盲区监测预警(Blind Spot Monitor),通过在驾驶者视觉盲区覆盖安装摄像头,帮助驾驶者看清盲区的路况信息,对盲区潜在碰撞进行预警。 夜视辅助系统(Night Vision),是一种源自军事用途的汽车驾驶辅助系统。在这个系统的帮助下,驾驶者在夜间或弱光线的驾驶过程中将获得更高的预见能力,能够针对潜在危险向驾驶者提供更加全面准确的信息或发出早期警告。 安全驾驶的功能,实现的基础是各类海量的图片数据,诸如各类驾驶员的图片资料、车辆行驶状况图片、车道线识别图片、信号灯图片、行人图片信息都是确保系统正常运转的基础,如果在数据环节出现错误,Uber无人车的车祸便是典型案例。 点我科技正是为无人驾驶与安全驾驶系统提供高质量数据服务的专业数据服务商,丰富的数据采集经验,涵盖了无人驾驶所需的全部领域,为安全驾驶系统提供数据基础,从根基层面保障驾驶安全。同时同各个人工智能厂商的合作,积累了丰富的数据经验,获得了广泛的好评。龙猫数据正在成长为数据行业的的领跑者,服务AI产业,筑基智慧生态。

热门文章

波士顿 - Neurala公司今天推出了一款新的视频标注工具,该工具由Brain Builder平台的人工智能辅助。“自动视频注释将显着加速神经网络的数据标注,从而帮助组织更快地培训和部署AI,”该公司表示。标记图像和视频对于开发用于建模和训练AI应用程序的数据集至关重要。Neurala  以软件即服务(SaaS)为基础提供Brain Builder,以帮助简化深度学习的创建,分析和管理。Neurala的联合创始人兼首席执行官Massimiliano Versace说:“人工智能数据准备的传统方法极其耗时且耗费人力,需要大量数据,需要经过精心和昂贵的注释。” “我们与Brain Builder的目标是通过易于使用的注释工具降低进入门槛。通过添加视频注释,我们能够进一步自动化数据准备,帮助组织将AI数据准备的时间和成本降低至少50%。“Neurala的专利和获奖技术源于2006年NASA,DARPA和空军研究实验室的神经网络研究。2013年,该公司加入了Techstars商业化计划。“每个人都想要AI,但他们不知道为什么,”Neurala的联合创始人兼首席运营官Heather Ames Versace说。“视频注释工具是终身AI技术堆栈的一部分,可提供透明度。”启用AI的注释可节省时间,提高工作效率当用户标记视频中的人物,物体或缺陷时,Neurala的新工具可以反复学习。Neurala表示,在用户在第一帧中标记感兴趣的项目后,该工具会自动在后续帧中注释相同的项目。例如,如果五个人输入一个框架,则在用户仅用一个人标记第一个框架后,它们将全部自动注释。相比之下,用户必须在他或她进入框架时标记每个人,这将花费更多的时间。此外,AI辅助视频注释可以提高标签处理速度并提高生产力,Heather Ames Versace告诉“ 机器人商业评论”。例如,用户可以注释10秒视频的一帧并获得300个注释的输出,而使用传统的注释方法,用户需要手动标记300个不同的图像才能获得相同的结果,Neurala说。“可解释性和信任始于数据,”Heather Ames Versace在最近的AI World大会上说。“通过在更短的时间内对数据进行注释和标记,团队可以进行更快速的原型设计。”用Brain Builder存钱“最终,它将帮助组织和开发人员更有效,更具成本效益地构建,培训和部署人工智能,”Massimiliano Versace说。“当涉及视觉AI的构建方式时,Neurala的Brain Builder平台已经在改变游戏规则。而现在,视频注释将进一步扩大可访问性和生产力的可能性。“Neurala说,Brain Builder还可以提供可观的投资回报。使用Brain Builder,组织可以以每小时6,750美元的视频进行注释,而没有它的则为13,500美元。Neurala发布  了一个教程  ,概述了使用Brain Builder在视频中标记对象的过程和好处。它还解释了如何使用TensorFlow训练语义分段网络。此外,本教程还引导观众了解跨多个GPU的培训步骤,这可以进一步缩短培训时间。