人脸识别主要算法原理

人脸识别主要算法原理

主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。

1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;
2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。
3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。

1. 基于几何特征的方法

人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。
    采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是 :设计一个参数可调的器官模型 (即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。
    这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。 基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 

2. 局部特征分析方法(Local Face Analysis)

    主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。

3. 特征脸方法(Eigenface或PCA)

特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。
    特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。

实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。 
    基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。现在Eigenface(PCA)算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。
    该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。其技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。Turk和Pentland提出特征脸的方法,它根据一组人脸训练图像构造主元子空间,由于主元具有脸的形状,也称为特征脸  ,识别时将测试  图像投影到主元子空间上,得到一组投影系数,和各个已知人的人脸图像比较进行识别。Pentland等报告了相当好的结果,在 200个人的 3000幅图像中得到 95%的正确识别率,在FERET数据库上对 150幅正面人脸象只有一个误识别。但系统在进行特征脸方法之前需要作大量预处理工作如归一化等。
    在传统特征脸的基础上,研究者注意到特征值大的特征向量 (即特征脸 )并不一定是分类性能好的方向,据此发展了多种特征 (子空间 )选择方法,如Peng的双子空间方法、Weng的线性歧义分析方法、Belhumeur的FisherFace方法等。事实上,特征脸方法是一种显式主元分析人脸建模,一些线性自联想、线性压缩型BP网则为隐式的主元分析方法,它们都是把人脸表示为一些向量的加权和,这些向量是训练集叉积阵的主特征向量,Valentin对此作了详细讨论。总之,特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性。

基于KL 变换的特征人脸识别方法
基本原理:
    KL变换是图象压缩中的一种最优正交变换,人们将它用于统计特征提取,从而形成了子空间法模式识别的基础,若将KL变换用于人脸识别,则需假设人脸处于低维线性空间,且不同人脸具有可分性,由于高维图象空间KL变换后可得到一组新的正交基,因此可通过保留部分正交基,以生成低维人脸空间,而低维空间的基则是通过分析人脸训练样本集的统计特性来获得,KL变换的生成矩阵可以是训练样本集的总体散布矩阵,也可以是训练样本集的类间散布矩阵,即可采用同一人的数张图象的平均来进行训练,这样可在一定程度上消除光线等的干扰,且计算量也得到减少,而识别率不会下降。

4. 基于弹性模型的方法

    Lades等人针对畸变不变性的物体识别提出了动态链接模型 (DLA),将物体用稀疏图形来描述 (见下图),其顶点用局部能量谱的多尺度描述来标记,边则表示拓扑连接关系并用几何距离来标记,然后应用塑性图形匹配技术来寻找最近的已知图形。Wiscott等人在此基础上作了改进,用FERET图像库做实验,用 300幅人脸图像和另外 300幅图像作比较,准确率达到 97.3%。此方法的缺点是计算量非常巨大 。
    Nastar将人脸图像 (Ⅰ ) (x,y)建模为可变形的 3D网格表面 (x,y,I(x,y) ) (如下图所示 ),从而将人脸匹配问题转化为可变形曲面的弹性匹配问题。利用有限元分析的方法进行曲面变形,并根据变形的情况判断两张图片是否为同一个人。这种方法的特点在于将空间 (x,y)和灰度I(x,y)放在了一个 3D空间中同时考虑,实验表明识别结果明显优于特征脸方法。
    Lanitis等提出灵活表现模型方法,通过自动定位人脸的显著特征点将人脸编码为 83个模型参数,并利用辨别分析的方法进行基于形状信息的人脸识别。弹性图匹配技术是一种基于几何特征和对灰度分布信息进行小波纹理分析相结合的识别算法,由于该算法较好的利用了人脸的结构和灰度分布信息,而且还具有自动精确定位面部特征点的功能,因而具有良好的识别效果,适应性强识别率较高,该技术在FERET测试中若干指标名列前茅,其缺点是时间复杂度高,速度较慢,实现复杂。

5. 神经网络方法(Neural Networks)

人工神经网络是一种非线性动力学系统,具有良好的自组织、自适应能力。目前神经网络方法在人脸识别中的研究方兴未艾。Valentin提出一种方法,首先提取人脸的 50个主元,然后用自相关神经网络将它映射到 5维空间中,再用一个普通的多层感知器进行判别,对一些简单的测试图像效果较好;Intrator等提出了一种混合型神经网络来进行人脸识别,其中非监督神经网络用于特征提取,而监督神经网络用于分类。Lee等将人脸的特点用六条规则描述,然后根据这六条规则进行五官的定位,将五官之间的几何距离输入模糊神经网络进行识别,效果较一般的基于欧氏距离的方法有较大改善,Laurence等采用卷积神经网络方法进行人脸识别,由于卷积神经网络中集成了相邻像素之间的相关性知识,从而在一定程度上获得了对图像平移、旋转和局部变形的不变性,因此得到非常理想的识别结果,Lin等提出了基于概率决策的神经网络方法 (PDBNN),其主要思想是采用虚拟 (正反例 )样本进行强化和反强化学习,从而得到较为理想的概率估计结果,并采用模块化的网络结构 (OCON)加快网络的学习。这种方法在人脸检测、人脸定位和人脸识别的各个步骤上都得到了较好的应用,其它研究还有 :Dai等提出用Hopfield网络进行低分辨率人脸联想与识别,Gutta等提出将RBF与树型分类器结合起来进行人脸识别的混合分类器模型,Phillips等人将MatchingPursuit滤波器用于人脸识别,国内则采用统计学习理论中的支撑向量机进行人脸分类。
    神经网络方法在人脸识别上的应用比起前述几类方法来有一定的优势,因为对人脸识别的许多规律或规则进行显性的描述是相当困难的,而神经网络方法则可以通过学习的过程获得对这些规律和规则的隐性表达,它的适应性更强,一般也比较容易实现。因此人工神经网络识别速度快,但识别率低 。而神经网络方法通常需要将人脸作为一个一维向量输入,因此输入节点庞大,其识别重要的一个目标就是降维处理。
    PCA的算法描述:利用主元分析法 (即 Principle Component Analysis,简称 PCA)进行识别是由 Anderson和 Kohonen提出的。由于 PCA在将高维向量向低维向量转化时,使低维向量各分量的方差最大,且各分量互不相关,因此可以达到最优的特征抽取。

6. 其它方法:

除了以上几种方法,人脸识别还有其它若干思路和方法,包括一下一些:
1) 隐马尔可夫模型方法(Hidden Markov Model)
2) Gabor 小波变换+图形匹配
(1)精确抽取面部特征点以及基于Gabor引擎的匹配算法,具有较好的准确性,能够排除由于面部姿态、表情、发型、眼镜、照明环境等带来的变化。
(2)Gabor滤波器将Gaussian络函数限制为一个平面波的形状,并且在滤波器设计中有优先方位和频率的选择,表现为对线条边缘反应敏感。
(3)但该算法的识别速度很慢,只适合于录象资料的回放识别,对于现场的适应性很差。

3) 人脸等密度线分析匹配方法
(1) 多重模板匹配方法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。
(2) 线性判别分析方法(Linear Discriminant Analysis,LDA)
(3)本征脸法
    本征脸法将图像看做矩阵 ,计算本征值和对应的本征向量作为代数特征进行识别 ,具有无需提取眼嘴鼻等几何特征的优点 ,但在单样本时识别率不高 ,且在人脸模式数较大时计算量大 
(4) 特定人脸子空间(FSS)算法
该技术来源于但在本质上区别于传统的"特征脸"人脸识别方法。"特征脸"方法中所有人共有一个人脸子空间,而该方法则为每一个体人脸建立一个该个体对象所私有的人脸子空间,从而不但能够更好的描述不同个体人脸之间的差异性,而且最大可能地摈弃了对识别不利的类内差异性和噪声,因而比传统的"特征脸算法"具有更好的判别能力。另外,针对每个待识别个体只有单一训练样本的人脸识别问题,提出了一种基于单一样本生成多个训练样本的技术,从而使得需要多个训练样本的个体人脸子空间方法可以适用于单训练样本人脸识别问题。
(5)奇异值分解(singular value decomposition,简称SVD)
是一种有效的代数特征提取方法.由于奇异值特征在描述图像时是稳定的,且具有转置不变性、旋转不变性、位移不变性、镜像变换不变性等重要性质,因此奇异值特征可以作为图像的一种有效的代数特征描述。奇异值分解技术已经在图像数据压缩、信号处理和模式分析中得到了广泛应用.

 

7. 面像识别的主要商业系统

90年代中后期以来,一些商业性的面像识别系统开始进入市场。目前,主要商业系统包括:
● Visionics公司的FaceIt面像识别系统,该系统基于Rockefeller大学开发的局部特征分析(LFA)算法;
● Lau Tech.公司的面像识别/确认系统,采用MIT技术;
● Miros公司的Trueface及eTrue身份验证系统,其核心技术为神经网络;
● C-VIS公司的面像识别/确认系统;
● Banque-Tec.公司的身份验证系统;
● Visage Gallery’s 身份认证系统,基于MIT媒体实验室的Eigenface技术;
● Plettac Electronic’s FaceVACS出入控制系统;
● 台湾的BioID系统,它基于人脸、唇动和语音三者信息融合的Biometrics系统。

其中,FaceIt系统是最具有代表性的商业产品,目前已在很多地方得到了应用。去年,它在英国用于被称为“Mandrake”的反罪犯系统中,该系统在144个监控摄像机采集的视频序列中搜索已知的罪犯或者嫌疑犯,如发现可能的罪犯,系统将通知中心控制室的警员。
笔者曾使用过FaceIt系统,并对其进行了各项指标的评测。结果表明,该系统在控制光照、准正面(3坐标轴上的旋转不超过15度)、无饰物的情况下具有较好的识别性能。但在实用过程中也发现,只有训练集人脸图像的采集条件与测试集人脸图像的采集条件基本一致时才能具有良好的识别性能,否则,其性能将急剧下降,尤其光照变化、姿态变化、黑框眼镜、帽子、夸张的表情、胡须和长发等对其性能的影响更大。

面像识别系统的测试
    基于对面像识别技术在军事安全等领域重要性的考虑,美国国防部的ARPA资助建立了一个对现有面像识别技术进行评测的程序,并分别于1994年8月、1995年3月和1996年9月(截至1997年3月)组织了三次面像识别和人脸确认的性能评测,其目的是要展示面像识别研究的最新进展和最高学术水平,同时发现现有面像识别技术所面临的主要问题,为以后的研究提供方向性指南。尽管该测试只对美国研究机构开放,但它在事实上成为了该领域的公认测试标准,其测试结果已被认为反映了面像识别研究的最高学术水平。
    根据2000年公开发表的FERET’97测试报告,美国南加州大学(USC)、马里兰大学(UMD)、麻省理工学院(MIT)等研究机构的面像识别技术具有最好的识别性能。在训练集和测试集摄像条件相似的200人的识别测试中,几个系统都产生了接近100%的识别率。值得一提的是,即使是最简单的相关匹配算法也具有很高的识别性能。在更大对象集的FERET测试中(人数大于等于1166人),在同一摄像条件下采集的正面图像识别中,最高首选识别率为95%;而对用不同的摄像机和不同的光照条件采集的测试图像,最高首选识别率骤降为82%;对一年后采集的图像测试,最大的准确率仅仅接近51%。
    

该测试结果表明,目前的面像识别算法对于不同的摄像机、不同的光照条件和年龄变化的适应能力非常差,理应得到研究者的足够重视。而且值得注意的是,该测试中所用的人脸图像均为比较标准的正面人脸图像,姿态变化非常小,也没有夸张的表情和饰物,以及没有提及面部毛发改变的情况。所以,我们认为,除了FERET测试所揭示的上述面像识别研究需要面对的问题之外,还需要考虑诸如姿态、饰物(眼镜、帽子等)、面部表情、面部毛发等可变因素对面像识别性能的影响。这些因素也是开发实用的面像识别产品时必然会遇到的最关键的技术问题。
为进一步测试商业面像识别系统的性能,并揭示2000年前后面像识别技术的最新进展,美国国防部的反毒品技术开发计划办公室于去年5月和6月对美国的主要商业面像识别系统进行了评测,称为FRVT’2000(Face Recognition Vender Test)评测。该计划邀请了美国所有面像识别系统厂商参加,共24家,但只有8家响应,最终有5家公司参加了评测,而只有3家的系统在规定时间内完成了全部对比实验。可以认为,这3家公司的产品是目前最具竞争力的商业识别系统,它们分别是FaceIt系统、Lau Tech.公司的系统和C-VIS公司的系统。FRVT’2000评估了这些系统对图像压缩、用户-摄像机距离、表情、光照、录制设备、姿态、分辨率和时间间隔等影响因素的识别性能。结果表明,面像识别系统的性能与1997年的测试相比有了一定的进步,但其识别性能对各种条件,如光照、老化、距离、姿态等,仍然离人们的期望值较远。

国内:

中科院-上海银晨

近年来,国内学者在对特征脸技术进行认真研究的基础上,尝试了基于特征脸特征提取方法和各种后端分类器相结合的方法,并提出了各种各样的改进版本或扩展算法,主要的研究内容包括线性/非线性判别分析(LDA/KDA)、Bayesian概率模型、支持矢量机(SVM)、人工神经网络(NN)以及类内和类间双子空间(inter/intra-class dual subspace)分析方法等等。

 近年来,中科院计算所在对特征脸技术进行认真研究的基础上,尝试了基于特征脸特征提取方法和各种后端分类器相结合的方法,并提出了各种各样的改进版本或扩展算法,主要的研究内容包括线性/非线性判别分析(LDA/KDA)、Bayesian概率模型、支持矢量机(SVM)、人工神经网络(NN)以及类内和类间双子空间(inter/intra-class dual subspace)分析方法等等。

推荐文章

前言:作为一名数据服务工作者---资深“乙方”,见过、听过或亲身经历过很多的数据治理相关的项目,如:数据交换共享项目、数据治理项目、主数据项目、元数据项目……,这些项目中,有非常成功的——用的很好,也有差强人意的——勉强在用,还有没上线就下线的——基本没有使用。如果我们Review下这些项目,也许我们不难发现影响数据治理项目成功或失败的因素有很多,这些因素有管理方面的、业务方面的、技术方面的、企业文化方面的等等。在笔者看来,数据治理项目的成功要素可以总结为以下几点,接下来的一段时间我会跟大家一起分享数据治理项目的各个成功要素,欢迎关注!企业数据战略管理数据治理架构设计数据治理的时机与切入点组织与保障体系建设技术和工具——工欲善其事必先利其器建立长效运营机制本期分享主题【数据治理的成功要素1:企业数据战略管理】,本文大纲:一、数据战略是什么?二、数据战略不是什么?三、数据战略的四个要素四、数据战略的三个层次五、数据战略制定的方法和工具六、总结一、数据战略是什么战略原本是军事领域的专用名词,是指指导全局战争的规划和方略。战略决定了组织的活动方向和内容,解决“干什么”的问题,是根本性的决策。在DAMA-DMBOK中对数据战略是这样定义的:战略是选择和决策的集合,共同绘制出一个高层次的行动方案,以实现高层次目标。通常,数据战略是一个数据管理计划的战略,是保存和提高数据质量、完整性、安全性和存取的计划。然而,数据战略计划可能还包括利用信息达到竞争优势和支持企业目标的业务计划。数据战略必须来自与对业务战略中的所固有的数据需求的理解,这些数据需求驱动了组织的数据战略。数据战略的组成部分包括:为数据管理制定激动人心的愿景数据管理商业案例摘要,附带精选的例子指导原则、价值观和管理远景。数据管理的使用和长远目标数据管理成功的管理措施短期的(1~2年,具体、可度量、可操作、可实现、有时限的)数据管理方案目标。说明数据管理的角色和组织级其职责和决策权概述。数据管理方案的组成部分数据管理实施路线图数据管理的项目章程数据管理的范围说明简单来说,企业数据战略包括:数据管理的愿景(长期目标)、中期目标、短期目标、实施策略、实施方案、实施路线图等。二、数据战略不是什么数据战略是企业愿景吗?可能是也可能不是,或者说不完全是。我们看下各大公司的企业愿景是什么。IBM:无论是一小步,还是一大步,都要带动人类进步。苹果公司:让每人都拥有一台计算机。阿里巴巴:分享数据的第一平台,幸福指数最高的企业,活“102”年。腾讯:科技向善。百度:成为最懂用户,并能帮助人们成长的全球顶级高科技公司。用友:用技术和创想推动社会和商业进步。企业愿景是企业利益相关者的本质诉求的整合,是企业战略的最高指引,可以理解为企业的长期战略。在当今席卷全球的颠覆性技术浪潮中,市场变化莫测,相对遥远的长期数据战略,笔者更倾向于哪些有着明确目标、明确范围、明确实施路径,具备可执行、可实现性的短期数据战略。世界变化太快,谁都无法预测10年后的世界是什么样子的,企业数据战略的指定一定要具备应对市场和技术变化的能力。这里申明,笔者并不是反对企业制定长期的数据战略规划,而是要在长期的数据战略之上细化出短期的可执行、可实现、能见效的战略目标,“小步快跑、快速迭代”。数据战略是企业战略的一部分,而企业战略是实现企业愿景的规划和部署。数据战略是数据架构吗?显然也不是,至少说不完全是。数据架构是用于定义数据需求,指导对数据资产的整合和控制,是数据投资和业务战略相匹配的一套整体的构件规范。数据架构包括正确的数据定义、有效的数据结构、完整的数据规则、健全的数据文档。数据架构整合了数据、流程、应用、组织、规范和技术,其典型输入包括:企业数据模型、企业价值链分析、数据库架构、商务智能或数据仓库架构、数据集成和整合架构、数据质量管理架构、以及文档和内容管理架构。数据战略和数据架构不是一回事。定义数据架构的决定,是数据战略的一部分,实施数据架构的决策是战略决策。数据战略会影响到数据架构的设计,反过来,数据架构支持数据战略的实现,并指导其决策。笔者认为:数据架构侧重于技术,是企业数据管理的战术范畴,数据架构对上承接数据战略目标,对下联通数据战略实施计划。数据战略的落地除了需要数据架构的技术支撑,也需要企业数据文化的建设。既然数据战略既不是看似缥缈的愿景,也是技术相关的架构,结合DAMA-DMBOK给出的数据战略定义,我们尝试总结下企业的数据战略究竟是什么。笔者看来:数据战略就是企业为实现某些业务目标而做出的数据规划和部署,主要包括:数据战略目标、数据战略范围和内容、数据战略实施策略、以及数据战略的实施路径和计划,这也就是我们所说的“战略四要素”。三、数据战略的四个要素1、数据战略目标——愿景和目标愿景是制定企业战略的起点,是企业的长期战略,而目标是企业短期内要达成的明确目标,是企业的短期战略。企业数据战略目标的规划设计不仅要有“诗和远方”的田野,也要考虑生活“眼前的苟且”。正如我们前边提到的阿里巴巴公司,大多数人都知道阿里巴巴是一个电子商务公司,可马云说阿里巴巴是一家大数据公司,其远期的数据战略目标是“分享数据的第一平台、幸福指数最高的企业”。阿里系的产品,如:天猫、淘宝、支付宝……,每时每刻都在生产、汇集、加工着大量的数据,这些数据是具备变现能力的。通过数据的变现和分享,希望阿里成为幸福指数最高的企业指日可待。如果我们把“分享数据的第一平台、幸福指数最高的企业”理解为阿里的远期数据战略的话, 当年阿里如火如荼的研发AliSQL替换Oracle的战略就是那个时期阿里的中期数据战略,这个战略从部署到实施花了10年之久;而当前被炒上天的“数据中台”就是目前阿里的短期数据战略,并且这个战略目前已经实现了。这里只是举例便于理解,也许阿里的数据战略并非如此。关于数据中台的话题,网上有太多的概念了,后边有机会的话可以分享下我对数据中台的理解,这里就略过了。2、数据战略范围和内容——战略定位战略定位是回答了“做什么”、“不做什么”的根本问题,企业数据战略定位,就是定义企业的数据管理/数据治理的范围和内容。按照DAMA的给出的数据战略范围主要包括:数据架构、元数据管理、数据标准管理、数据质量管理、主数据和参照数据、数据安全管理等。以上每个部分内容都可各成体系,那对企业来说,数据治理范围和内容该如何选择,却是摆在企业面前不得不回答的问题。这里,笔者建议企业的数据治理定位应充分考虑以下几点因素:企业的痛点需求是什么,希望实现的目标是什么,实施数据治理就能解这些问题吗,数据治理的投资计划(人力和资金),期望的投资回报率。把以上问题问题都想清楚了,你的数据战略定位也就清晰了——或选择全域治理、或选择个别亟待治理的主题。 3、数据战略实施策略——致胜逻辑致胜逻辑是解决了“怎么做”,“由谁做”,“做的条件”、“成功原因”等问题,是战略的精髓。我们都知道数据治理项目涉及的业务范围广、系统范围大、参与人员多,并且数据治理是一个需要不断迭代、持续优化的过程,不能一蹴而就。那么数据治理项目该从何处入手,谁来主导、谁来配合、怎样才能保证项目的成功实施并能够取得效果?这个问题不好回答。根据笔者这些年见到、听到或亲身经历的数据项目,成功或失败,很大一部分因素是由这个“致胜逻辑”决定的。成功的项目不表,我们看大多数失败的项目都可能会有以下几个特点:目标不明确、范围不清晰、主导人员分量不足、参与人员不够积极、过分迷信技术和工具、过渡依赖外部资源……。做正确的事远比正确的做事更加重要,事前想清楚数据战略的致胜逻辑,要比事后总结教训的成本低很多。数据治理项目的成功一定是将以上因素有机整合,忽视某一因素都可能会影响的数据治理的成效。4、数据战略的实施路径——行动计划行动计划是落实战略目标或指导方针而采取的具有“协调性”的计划安排。行动计划解决了“谁”、“在什么时间”、“做什么事”、“达成什么目标”的具体活动计划。行动计划要具备可执行性、能够量化、能够度量,遵循PDCA的闭环管理,定期进行复盘和检讨。前文我们提到:数据治理是一个需要不断迭代、持续优化的过程,不可一蹴而就经验告诉我们:数据治理绝对不是引入先进的技术、牛X的软件就能够解决的。项目建设过程需要企业高层的高度重视并给予足够的资源支持,需要有经验丰富的顾问团队,需要技术部门和业务部门的通力协作,这样提高项目建设的成功率。然而,项目建设阶段的成功并不代表数据治理的成功,建设阶段的成功企业数据治理项目的终点,却是企业数据治理的起点。路漫漫兮其修远,企业数据治理需要的是持续运营,将数据治理形成规则融入企业文化,是企业数据治理的根本之“道”。四、数据战略目标的三个层次数据战略的三个境界——此节内容并没有官方定义,单凭个人理解,如有偏颇但求指正。笔者认为企业数据战略大致可以分为:满足基本的管理目标和业务目标、创新与创业、定义在数字化竞争生态中的角色和地位,三个层次。这三个层次并不是不同企业不同的数据管理目标,而是企业数据战略的在不同阶段、不同成熟度条件下的三个具体形态。1、第一个层次——短期目标满足基本的管理决策和业务协同。通过解决企业的数据管理中的各类问题,以满足决策分析和业务协同的需要,对于该层次的战略目标,笔者认为是企业最基础的、最迫切需要的、最能击中企业痛点的。随着多年的信息化建设,企业上了多套业务系统,而这些业务系统是由业务部门驱动建设的,缺乏信息化的顶层规划,各系统各自为政、各成体系、信息孤岛……,系统之间的数据不标准、不一致,导致的应用集成困难、数据分析不准确。可以说目前国内绝大部分企业都是处于这个状态,而信息技术的发展速度又太快,已逐步形成了技术倒逼企业数字化的转型的趋势,而高质量的数据资产,无疑是企业数字化转型的基石。2、第二个层次——中期目标创新与创业。基于数据实现企业管理的升级和业务的创新,通过数据的利用拓展新业务、构建新业态、探索新模式是笔者认为的企业数据战略的第二个层次,也是企业数据战略的中期目标。数据战略不再是企业战略的支撑,而是引导,或者说是相互作用,这个阶段“IT即业务”!对于传统制造企业利用数据的治理和融合,可以加速管理的创新、产品的创新、销售模式的创新,例如:利用数据治理加强集团管控、基于客户偏好的个性化定制、利用数据的供应链协同和优化、基于市场预测的创新产品设计与快速上市等等。对于服务行业利用大数据的探索服务的新模式,数据可以拓宽服务的视野,实现模式领域的横向拓展、服务精度的纵向延伸,例如:根据消费者需求推出定制化的主题房,酒店新零售的服务模式,都是酒店服务业在业务创新方面上的尝试,大大提升了客户的粘性,提高了酒店的盈利点。这样的案例,在金融服务、餐饮服务、医疗服务、教育服务等服务行业,每天都在上演……。未来的服务业的竞争将更加白热化,而数据资产的利用价值将愈发明显。3、第三个层次——远景目标定义在数字化竞争生态中的角色和地位,企业数据战略的最高奥义。用友董事长王文京预言:“未来所有企业都将是数字化企业”,针对这个观点本人深以为然。科技的变革将改变企业的业务形态和竞争模式,未来的数字化竞争中,数字化将是不可忽视的核心因素,企业数据战略的部署和成功实施,将决定您的企业在未来的竞争和数字化生态中,是领导地位、挑战者、特定领域者或是淘汰出局。“什么样的愿景,决定了什么样的未来”,企业数据战略愿景的规划一定要有未来的“诗和远方”。将数据战略愿景融入企业行动方针和核心价值观中,勾勒出企业未来的“图景”。例如,马云描述阿里巴巴的愿景:分享数据的第一平台,幸福指数最高的企业,活“102”年。五、数据战略制定方法与工具数据战略的制定以企业战略为基础、以业务价值链为模型、以管理应用为目标,以可执行的活动为步骤,通过系统化的思维,挖掘信息以及信息间的规律,经过科学的规划和设计,形成企业数据化运营的一幅蓝图。对于数据战略规划的方法,目前业界还未形成一套成熟的方法论体系,但是,IT咨询和IT战略规划的方法论已经比较成熟,可用作企业数据战略规划的参考,我们先看下各大知名咨询公司的IT战略规划方法:埃森哲 IT战略规划方法论IBM IT战略规划方法论德勤  IT战略规划方法论无论哪家方法论,对于IT战略规划本质上都是一样的,基本都包含了三个步骤:1、调研分析,关键活动有:战略理解、需求分析、现状评估、行业最佳实践对比……2、远景规划,关键活动有:业务规划、组织架构、技术架构、数据架构、应用架构、IT支撑……3、实施策略,关键活动有:项目实施、进度和质量管控、效益分析、基础支撑……以上IT咨询规划方法,同样适用于企业数据战略的规划设计,但在数据战略规划设计时需要重要考虑以下几个核心问题:

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。