运用人工智能和大数据,探索城市高效管理

日前,李克强总理在上海考察时对运用人工智能和大数据改善政府服务提出了新要求。准确把握人工智能和大数据的新风口,需要进一步转变思路、创新模式、推动公众参与。

 

  防范出现“眉毛胡子一把抓”

 

  实践中,由于工作推进的思路与方法不清晰,不少智能化应用非但没有减少政府部门的工作量,反而给一些主管部门新增了负担。

 

  例如,在智慧交通项目推进中,技术公司在不懂政府管理关键节点情形下开发的智能化系统,倾向于将城市管“死”。这不仅增加了相关部门的工作负担,而且损害了行政韧性。

 

  同时,由于智能化管理系统的流程设置问题,当自上而下的压力型行政系统遇到程序化的智能化应用系统之后,原本应该走进社区、走向一线、走入群众的工作在“规范化管理、精准化服务、智能化发现”的程序设计思路中遭到弱化。结果是,政府投入增加了,基层工作人员更忙了,政府服务测评分数反而下降了。

 

  为此,有必要改善政府部门对人工智能和大数据应用的管理感受度,推动应用场景开发的供给侧改革。

 

  例如,为解决智慧交通管理有效关键信息抓取少、无用信息抓取多、系统使用效能感不强的问题,政府部门可探索政企合作的供给侧改革模式,将交通管理的关键信息和关键节点重点列出、重点研究、重点解决,以此防范出现“胡子眉毛一把抓”的问题。

 

  以问题为导向实现系统迭代

 

  现实中,由于分布式开发机制与自上而下条块体制结合度不够,企业参与城市智能化管理系统开发的获得感往往不足。同时,在条块体制下,下级政府部门的系统往往既要兼容上级条线管理部门,又要兼容本级政府部门,以实现政府系统的互联互通。在多重要求之下,“多方满意方案”的系统性能往往被打折扣。

 

  要提升企业参与人工智能和大数据应用开发的获得感,有必要创新开发模式,改变现有的整体外包式或分布式开发路径依赖。

 

  一方面,在城市智能化管理的应用程序开发过程中,应事先明确技术开发标准,定义好可兼容的信息存储格式和数据接口,避免产生不同条块部门反复重建系统的问题。

 

  另一方面,一级政府部门应以公司化的运作模式建立起自己的技术团队,在初期进行主系统程序招标的基础之上,将政府部门自身的技术团队不断融入主系统的开发和维护之中,从而实现城市智能化管理主系统的稳定与可持续。

 

  处理好安全、便民、隐私关系

 

  由于前期缺乏充分论证和公众参与,本应以“安全、便民、高效、公正”为导向的智能化系统,在实际应用中反而给公众带来了新的烦恼。

 

  要提升公众对于人工智能和大数据应用的感受度,需着力处理好两对关系:

 

  一是安全与便民的关系。

 

  城市公共安全固然重要,但智能化管理不能因安全问题而因噎废食,不能为了解决安全问题而将城市“管死”、将公众“圈住”、给居民“添堵”。这就要求在前期应用场景规划中,引入更多的公众参与,考虑到多样化的需求和场景,实现城市智能化管理安全与便民的平衡。

 

  二是安全与隐私的关系。

 

  随着社会的现代化,在主要以职业界定身份和社会关系网络的城市社会中,对多元价值的包容成为现代城市文明的主要标志。在不危害社会公共秩序、不影响其他人生活的前提下最大限度地实现自我选择和自我发展,就对个人隐私保护提出了更高要求。为此,城市智能化管理的系统开发应准确划分公共领域和私人领域的范围,做到安全保护与个人隐私、法治与人文关怀的兼顾。

 

  探索高效管理与透明管理

 

  总的来看,对焦新风口,推动人工智能和大数据的深度应用,是推动政府管理转型升级的重大机遇。

 

  首先,人工智能和大数据为高效的城市管理系统建设提供了可能。纵观人类百年城市史,行政系统低效、腐败、管理不善是除外敌入侵之外的最大威胁。智能化管理通过抓取有效信息,有望实现高效管理和透明管理。这是城市治理的一次重大突破。

 

  其次,在人工智能和大数据应用中,政府代表的公平价值与企业代表的效率价值可以尝试进行融合,进而达成社会治理创新的共识。

 

  再次,从更长的历史时段来看,治理体系和治理能力现代化最终要建立在命运共同体之上,而人工智能和大数据的应用通过多主体的互融互通,客观上有助于加速这一探索进程。

推荐文章

数据标注「星尘数据」获数百万元天使轮投资
公司8月获得天使轮投资,由天使湾领投,英诺天使、老鹰基金和创势基金跟投。Tractica预测,2024年人工智能市场规模将增长至111亿美元。但AI要真正发挥作用,优质的数据必不可少,正如业界共识“大量数据+普通模型”比“普通数据+高级模型”的准确度更高。所以,前端的数据采集、加工环节单拎出来成为了新的机会点。其实,数据标注并不算一个完全新兴的产业。成立于1998年的“海天瑞声”已在语音领域耕耘近20年,因为人工智能一词的提出,最早可以追溯到20世纪50年代,不过此前主流技术没有到“深度学习”的阶段,所以数据用的相对较少。目前这个赛道上,成立久的有“数据堂”,早期公司有获得明势资本Pre-A轮融资的“爱数智慧”,完成天使轮融资的“泛涵科技”,获得合力投资数百万天使的“丁火智能”,获金沙江领投的“龙猫数据”,自营数据工场的BasicFinder等。“星尘数据”也是赛道上一员,平台上聚集了2万多名大学生,通过众包方式提供数据标注服务。比如,在文本场景中,标注特定词语之间的关联关系,可以训练机器理解用户评论,也就是常说的语义识别。又比如,地产场景中,人工标注户型结构。再比如,生物医学场景中,需要人工标注人眼虹膜。最前端,“星尘数据”根据客户的挖掘需求提供咨询服务、优化方案。之后的标注任务,在星尘自研发的“stardust”系统中完成,平台上有客户提供的数据和标注模型,任务会被切割分配给每个C端,形成“动态发题”,通过“准入考核”的C端才能认领答题。过程中,“stardust”系统会辅助标记。例如,正常的图像识别训练,需要人工一点点贴边抠图,比较费时,而stardust系统中,人工只需要标注出绿色的正区间和红色的负区间,系统就能自动抠图(如下图)。再例如,语音识别时,系统可以先自动转换一部分文字,来降低人的工作量。我们知道,数据标记是个重人力的劳动密集型行业,这类公司的关键点就在于——人员效率、交付质量。“stardust”系统便是星尘数据的主要差异点,背后离不开算法的支撑。星尘团队也都是算法出身,创始人兼CEO章磊曾在世界银行、华尔街、硅谷工作8年,涉及金融、保险、数据、量化、风险模型、人工智能等方向,在硅谷开发了世界首款股权投资机器人,在北京担任首席数据科学家。联合创始人董磊曾工作于百度人工智能实验室(前吴恩达团队),从事基于移动端数据的分析与建模工作。目前,通过“stardust”系统,人的工作量在80%,机器的工作量在20%,这个比例还在不断优化中,未来机器可能占到80%。在36氪之前的文章中,有创业者表示不会用机器标注替代人工,“因为人工标记的数据在误差层面符合正态分布,而机器标记的都是同一水平,用机器生产的数据再训练机器,并不利于AI最后的训练效果。”以及,理论上,下游的应用公司算法更强,若用算法进行抠图,企业客户为什么不自己标注?对此,章磊认为,人工标注确实会有偏差,但这种偏差并不会有助于机器训练。准确答案只有一个,星尘可以通过算法机制保证输出正确结果,目前的准确率在99%。并且,下游应用公司的最终模型和标注时需要的模型还是不一样的,星尘的模型是用来提高效率的。还有个普遍的问题就是有关数据安全和复用,这方面星尘跟硅谷数据安全公司合作,用加密技术在数据底层做隔离,分离数据使用权和拥有权,防止数据在众包过程中泄漏。由于每个公司对数据的要求不一样,只有在一些通用的逻辑中,数据才有可能复用,比如智能客服,所以星尘基本不会留存数据,除非客户有售卖的特殊需求。至于收费,星尘主要根据数据标注量和难度来报价,平均客单价在3-5万元以上,大客户甚至到百万级别。目前公司已经服务了10家左右客户,3-5万的单子耗时不超过1周。章磊分享,数据的需求贯穿AI公司的各阶段,占公司支出10%-20%左右,像商汤科技就在用300人的团队标记几千万的人脸图片。现有的国内外标注营收估计在30亿人民币,预计3年后达到100亿。不过,对于这一波因为深度学习而兴起的数据服务商来说,最大的潜在威胁很可能并非来自竞品,而是来自于增强学习、迁移学习等算法,后者仅需要少量的数据即可以达到一定的效果。章磊认为,迁移学习等确实是将来的趋势,就单个模型来说,积累越久,数据需求量肯定会越少,但对于新模型来说,前期的需求量不会少,而模型是在增加的,所以对于“数据标注”这个正处在上升期的行业,暂时不会有明显影响。据悉,“星尘数据”公司在今年5月份注册,8月获得数百万元的天使轮投资,由天使湾领投,英诺天使、老鹰基金和创势基金跟投。团队目前在10人左右,还在扩招中(Python工程师岗位,高级销售经理岗位,高级市场经理岗位),如果你也对该公司感兴趣,可以投递简历至liaijun@stardust.ai。本文来自36氪

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。