龙猫数据携手400万用户升级数据服务,AI企业成最大受益者

AI自诞生之日起就给了我们无限的想象力,成为了社会普遍关注的话题。“人工智能将会快速爆发,10后50%的人类工作将被AI取代。”创新工场董事长李开复曾介绍到。对于AI创业者而言,巨头们搭建的AI生态日渐完善,存储和计算成本大幅下降,AI初创企业的难度也正在逐渐降低。据资料显示,过去两年新增加人工智能企业数超过了过去10年的总和。

深度学习带动更多行业应用

深度学习是一个划时代的技术,强大学习能力逼近任意函数的能力,在图像,视觉,语音等各种应用中得到很好的证实。利用GPU运算,在模型相当复杂,数据量特别大的情况下,依然可以达到很理想的学习速度。深度学习与大数据结合,轻易实现了各种场景任务,从而使得各个行业应用成为了可能。AI目前在应用层面主要聚焦语言识别、语义技术处理以及计算机视觉领域,其中的代表企业包括科大讯飞、地平线、旷视科技、云知声等企业。

AI需要大量数据支持

关于人工智能,有很多听上去接近神话的案例,而神话是伪科学的,毕竟展示锄头是不可以代替种地的。AI也绝对不会是一个人完成的,如果一个人完成了工智能,这个人工智能也不会有多智能。AI需要大量数据训练神经网络,通过不间断的训练才可能达到所谓的“智能”,而获得海量的数据对AI企业至关重要。龙猫数据是一家专业的AI数据服务商,在大数据服务中也有着自己的看法:“可靠”取决于优质的数据质量:对于一家无人驾驶的AI企业而言,正确的道路信息和驾驶习惯是至关重要的。如果训练神经网络有闯红灯、不避让行人的数据样本,那么这个无人驾驶产品在道路行车中则是灾难性的。优质的数据样本是保障AI产品可靠极其重要的。

“精准”取决于大量的数据样本:在图片人脸识别领域,曾经因为数据样本的原因导致机器错误的将黑人识别成了黑猩猩。其原因就是数据样本的单一和数据样本的匮乏。用1万张人脸图片供机器学习和用100万张人脸图片供机器学习,其差别是显而易见的。所以说精准的识别度需要大量的数据样本支持。

“极致”取决于定制的数据种类:随着AI技术的不断成熟,AI的应用领域也在不断延伸。而延伸所及到的领域就需要与之相匹配的数据。还拿无人驾驶举例,车道行车驾驶数据训练的车辆只能在道路行车中完成无人驾驶,如果车辆行驶到社区、村庄等非车道道路环境下车辆将无法完成自动驾驶。更多定制化数据样本训练可以让产品接近“极致”

龙猫数据

两大业务:数据采集,数据标注

两个平台:众包数据采集 App,众包数据标注 Web 平台

目前龙猫数据可以完成图像、语音、视频、文本四大类别的数据采集和数据标注工作。

龙猫数据优势

数据采集样本量大、样本分布广泛:龙猫把数据采集需求分包给平台上百万量级的众包用户,依靠他们闲暇的时间进行数据采集,可以快速搜集大量的数据样本;

数据标注有多重质量把关:数据标注的质量会直接影响AI训练的效果,龙猫的数据标注平台有标注员培训-标注员考核-标注-审核-抽审,多重把关机制确保最终产出高质量数据;对复杂的数据需求,龙猫还会通过自己管理的线下团队进行标注。

丰富的数据采集、标注经验:龙猫从2016年起开始提供AI数据采集、标注服务,长期为百度、腾讯、小米、今日头条、蔚来汽车、升哲、出门问问、猎户星空、Advance、图森、下厨房、深鉴、Remo、YI+、西井、博云、云从、Video++ 等公司提供数据服务,参与数百个项目,积累了非常丰富的数据处理经验,也在业内积攒了很好的口碑。

龙猫数据,专业的AI数据服务商

龙猫数据注重AI大数据行业发展,产品和服务的横向发展和纵向延伸都做了升级,可以最大限度的满足AI企业日益增长的定制化数据需求。龙猫数据践行行业责任和使命,携手400万用户提供AI数据服务,为AI领域不断发展提供支持。


本文来自南方企业新闻

推荐文章

人工智能行业研究报告围涵盖AI基础技术及终端产品研究范围:人工智能是一门综合了计算机科学、生理学、哲学的交叉学科。凡是使用机器代替人类实现认知、识别、分析、决策等功能,均可认为使用了人工智能技术。作为一种基础技术,人工智能在很多行业都有用武之地。既有人工智能+基础行业的概念(如人工智能+金融=Fintech),也有其具体应用行业的概念(比如机器人)。按照技术应用的不同场景,可以将人工智能分为基础技术类及终端产品类,本报告研究范围涵盖以下领域:研究目的:本报告将集中探讨:„ 人工智能行业整体的发展现状与技术发展趋势„ 各细分领域投融资热度与技术成熟度„ 巨头在人工智能领域的布局与策略„ 各应用领域市场规模、竞争格局、进入壁垒、产业链上下游构成„ 行业标杆的商业模式、核心竞争力、未来发展预期目 录 Contents一、人工智能行业驱动力1. 行业驱动——数据量、运算力、算法技术2. 政策法规3. 投资热度国际投资热度分析国内投资热度分析国内公司运营数据分析二、人工智能产业链与巨头布局分析1. 产业链构成2. 巨头布局开源平台布局芯片布局技术布局一、人工智能行业概述三、人工智能基础应用介绍与典型公司分析1. 语音识别2. 语义识别3. 计算机视觉目 录 Contents五、人工智能在各行业的应用介绍与典型公司分析1. 机器人2. AI+金融3. AI+医疗4. AI+安防5. AI+家居六、人工智能芯片介绍与典型公司分析六、人工智能行业趋势展望1. 人工智能各行业综述2. 人工智能当前发展瓶颈四、人工智能芯片介绍与典型公司分析1. 人工智能芯片适用性分析GPUFPGAASIC2. 人工智能芯片产业链分析3. 人工智能芯片典型公司分析人工智能行业概述CHAPTER 1 • 行业驱动——数据量、运算力、算法技术• 政策法规• 投资热度国际投资热度分析国内投资热度分析国内公司运营数据分析636Kr-人工智能行业研究报告2017年2月数据量、运算力和算法模型是影响人工智能行业发展的三大要素。2000年之后,数据量的上涨、运算力的提升和深度学习算法的出现极大的促进了人工智能行业的发展。• 海量数据为人工智能发展提供燃料要理解数据量的重要性,得先从算法说起。数据量和算法可以分别比作人工智能的燃料和发动机。算法是计算机基于所训练的数据集归纳出的识别逻辑,好的算法模型可以实现精准的物体和场景识别。数据集的丰富性和大规模性对算法训练尤为重要。因此可以说,实现机器精准视觉识别的第一步,就是获取海量而优质的应用场景数据。以人脸识别为例,训练该算法模型的图片数据量至少应为百万级别。2000年以来,得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生并存储的数据量急剧增加,这为通过深度学习的方法来训练计算机视觉技术提供很好的土壤。IDC数据显示,从2011年起,全球所产生的数据量已达到ZB级别(1ZB约为10亿GB ),海量的数据将为计算机视觉算法模型提供远远不断的素材。而关于数据量对提高算法准确率方面的重要性,更有学者提出:“It’s not who has the best algorithm that wins. It’s who has the most data. ”行业驱动力 · 数据量海量数据为人工智能发展提供燃料大数据训练模型 应用于具体场景算法模型 场景应用01020304050来源:IDC,36氪研究院2020数据量与准确率之间的关系 2009-2020年全球总体数据量(单位:ZB)20090%10%20%30%40%50%60%70%80%90%100%100 200 300 400 500 600 700 800 900 1000测试字符数量Window Memory-BasedPerceptron Naïve Bayes说明:window、memory-based、perceptron、naive bayes 均为不同算法来源:Stanford机器学习公开课,36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析准确率736Kr-人工智能行业研究报告2017年2月人工智能领域是一个数据密集的领域,传统的数据处理技术难以满足高强度、大数据的处理需求。 AI芯片的出现让大规模的数据效率大大提升,加速了深层神经网络的训练迭代速度,极大的促进了人工智能行业的发展。AI算法的处理需要大量的矩阵计算操作,因此特别适合使用并行运算芯片进行数据处理。而传统的CPU一次只能同时做一两个加减法运算,无法满足并行运算的需求。目前,出现了GPU、NPU、FPGA和各种各样的AI-PU专用芯片。而其中, 出现最早的GPU为人工智能的发展做出了巨大的贡献。擅长并行计算的GPU大幅提升机器学习效率。在GPU出现之前,算法运行的速度是很慢的,即使是一个简单的神经网络数据的培训,也得花费几天、甚至几周的时间。 1999 年,Nvidia 公司在推销Geforce 256 芯片时,提出了GPU( 图像处理器) 概念。GPU是专为执行复杂的数学和集合计算而设计的数据处理芯片。它的出现让并行计算成为可能,对数据处理规模、数据运算速度带来了指数级的增长,极大的促进人工智能行业,尤其计算机视觉领域的发展。GPU与传统CPU相比,在处理海量数据方面有压倒性的优势。 据Rajat Raina 与吴恩达的合作论文 “用 GPU 进行大规模无监督深度学习” 显示,在运行大规模无监督深度学习模型时,使用 GPU 和使用传统双核 CPU 在运算速度上的差距最大会达到近七十倍。在一个四层,一亿个参数的深度学习网络上,使用 GPU 将程序运行时间从几周降低到一天。今天,数据处理速度不再成为制约计算机视觉发展的主要瓶颈。想要发挥专用芯片的计算优势,需要芯片结构和软件算法两者相匹配。目前的趋势是,随着对人工智能各类应用需求的不断增强,专门用于加速人工智能应用的AI-PU或将成为计算机另一个标配组件。行业驱动 · 运算力运算力的提升大幅推动人工智能发展世界上第一款GPU-GeForce 256 中科寒武纪即将投产的 “寒武纪”NPU Altera的高端FPGA 产品 Stratix 101.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析836Kr-人工智能行业研究报告2017年2月在深度学习出现之前,机器学习领域的主流是各种浅层学习算法,如神经网络的反响传播算法(BP算法)、支撑向量机(SVM)、Boosting、Logistic Regression等。这些算法的局限性在于对有限样本和计算单元的情况下对复杂函数的表示能力有限,对复杂数据的处理受到制约。以计算机视觉为例,作为一个数据复杂的领域,浅层学习算法的识别准确率并不高。该类识别原理多为通过寻找合适的特征来让机器辨识物品状态,由于这个处理逻辑是浅层的,不能穷举各种复杂的情境,因而算法拟合的准确率不高。深度学习突破人工智能算法瓶颈。2006年,Geoffrey Hinton 和合作者发表论文,“A fast algorithm for deep belief nets”,此后“Deep Learning(深度学习)”的概念被提出。以计算机视觉为例,深度学习出现之前,基于寻找合适的特征来让机器辨识物体状态的方式几乎代表了计算机视觉的全部。尽管对多层神经网络的探索已经存在,然而实践效果并不好。深度学习出现之后,计算机视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流。即,机器从海量数据库里自行归纳物体特征,然后按照该特征规律识别物体。图像识别的精准度也得到极大的提升,从70%+提升到95%。在短短几年时间里,深度学习颠覆了语音识别、语义理解、计算机视觉等基础应用领域的算法设计思路,逐渐形成了从一类训练数据出发,经过一个端到端的模型,直接输出最终结果的一种模式。由于深度学习是根据提供给它的大量的实际行为(训练数据集)来自我调整规则中的参数,进而调整规则,因此在和训练数据集类似的场景下,可以做出一些很准确的判断。行业驱动力 · 算法深度学习突破人工智能算法瓶颈72.00% 74.50%84.70%89.00%93.00% 95.00%60%70%80%90%100%2010 2011 2012 2013 2014 20152010-2015年 ImageNet 比赛图像识别准确率注释:ImageNet是计算机视觉系统识别项目。来源:36氪研究院过去 现在 未来Google translate语义识别准确率60%83.4% …注释:Google translate是语义识别项目。来源:36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析936Kr-人工智能行业研究报告2017年2月 • 其他国家人工智能相关政策各国均在政策层面强调和推动人工智能的发展。其中,美国侧重于研发新型脑研究技术;欧盟主攻以超级计算机技术来模拟脑功能;日本则聚焦以动物为模型研究各种脑功能和脑疾病的机理。政策法规 · 国外政策加码,人工智能发展如火如荼国家 相关措施美国• 2013 年4 月,美国正式公布“推进创新神经技术脑研究计划”(BRAIN)。得到政府拨款1.1 亿美元,覆盖美国国家卫生研究院(HIN)、国防部高级研究项目局、国家科学基金会。• 2014 年HIN 小组制定了未来十年详细计划,预计每年投入3-5 亿美元开发用于监测和映射大脑活动和结构的新工具,十年计划共花费45 亿美元。欧盟2013 年初,欧盟宣布了未来十年的“新兴旗舰技术项目”——人脑计划(HBP),该项目汇聚了来自24 个国家的112 家企业、研究所和高校等机构,总投资预计将达到12 亿欧元。计划在2018 年前开发出第一个具有意识和智能的人造大脑.日本2014 年9 月启动大脑研究计划Brain/MINDS。该计划为期10 年,由日本理化学研究所主导实施,旨在理解大脑如何工作以及通过建立动物模型,研究大脑神经回路技术,从而更好地诊断以及治疗大脑疾病。来源:36氪研究院1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析1036Kr-人工智能行业研究报告2017年2月 • 国内人工智能相关政策国内近几年也出台了相关扶植人工智能发展的政策,积极推动人工智能在各个细分领域的渗透。2016年5月,国家四部委更是颁布《 “互联网+”人工智能三年行动实施方案》,明确提出要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平。政策法规 · 国内政策加码,人工智能发展如火如荼实施时间 颁布主体 法律法规 相关内容2015.5 国务院 《中国制造2025》提出“加快发展智能制造装备和产品”,指出“组织研发具有深度感知、智慧决策、自动执行功能的高档数控机床、工业机器人、增材制造装备等智能制造装备以及智能化生产线,统筹布局和推动智能交通工具、智能工程机械、服务机器人、智能家电、智能照明电器、可穿戴设备等产品研发和产业化。”2015/7/4 国务院《国务院关于积极推进“互联网+”行动的指导意见》明确提出人工智能作为11个重点布局的领域之一,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用。2015/7/9 中央办公厅、国务院《关于加强社会治安防控体系建设的意见》加大公共安全视频监控覆盖,将社会治安防控信息化纳入智慧城市建设总体规划,加深大数据、云计算和智能传感等新技术的应用。2016.1 国务院 《“十三五”国家科技创新规划》智能制造和机器人成为“科技创新-2030 项目”重大工程之一。2016/3/18 国务院《国民经济和社会发展第十三个五年规划纲要(草案)》人工智能概念进入“十三五”重大工程。2016/5/18国家发展改革委、科技部、工业和信息化部、中央网信办 《“互联网+”人工智能三年行动实施方案》明确了要培育发展人工智能新兴产业、推进重点领域智能产品创新、提升终端产品智能化水平,并且政府将在资金、标准体系、知识产权、人才培养、国际合作、组织实施等方面进行保障。1.1行业驱动---数据量运算力算法技术1.2 政策法规1.3 投资热度全球投资热度国内投资热度国内公司运营数据分析1136Kr-人工智能行业研究报告2017年2月 • 融资规模与成立公司数量总览咨询公司Venture Scanner统计,截止2016年Q2,全球人工智能公司已突破1000家,跨越13个子门类,融资金额高达48亿美元。而人工智能创投金额在5年间增长了12倍。投资热度 · 全球全球AI领域融资金额5年增长12倍62 96 66 68 64 138 125 102 186 283 211 141 321 555 394 942 769 398 911 485 6361,04911211322 2038 37 38 43 50634770 77 84 809284120100134

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。