AI 和教育到底谁在变革谁?

瞿炜在 2019 钛媒体 T-EDGE 科技生活节做主题演讲

教育行业内已经普遍认可“人工智能+教育”的重要性了,但当我们在大谈特谈 AI 如何重构教育时,它又会面临哪些真正的挑战?

7月13日,新东方 AI 研究院院长瞿炜来到 2019 钛媒体 T-EDGE 科技生活节谈了谈他的看法。

作为一家创立已经26年的老牌教育巨头,新东方积极拥抱新技术。在瞿炜看来,未来 AI 大势不可阻挡,“AI +教育”是新东方承担历史责任,必须要全力以赴。

在 AI 浪潮席卷各个产业的大背景下,去年,新东方教育科技集团成立了 AI 研究院。据瞿炜介绍,新东方 AI +教育的作战地图,主要从从教、学、考、评、测、练等维度进行,结合线上和线下的混合学习、学科维度等场景落地。

不过,就在他们这一年间快速落地“AI +教育”的时候,也发现了许多意想不到的挑战。这些挑战体现在语音识别、人脸识别、文字识别、自然语言处理,以及 AR 与 VR,几乎涵盖“AI +教育”的所有场景范畴。

就在行业热捧“AI 教师”的趋势下,瞿炜提出了一个值得注意的观察,他们通过研究市场上所有做 AI 教师直播课的产品,得出一个规律,无论产品模拟真人多么逼真,在8分钟之类,基本上学生都能发现 AI 教师是一个假人。

而在谈论 AI 变革行业,在具体落地场景时,我们也应当明确,行业也在发生变革与分化,不同行业的 AI 有截然不同的一套理论、算法和系统。(本文首发钛媒体,作者/李程程)

以下是新东方AI研究院院长瞿炜在2019 钛媒体 T-EDGE 科技生活节的演讲全文,经钛媒体编辑:

大家好,非常高兴今天受钛媒体邀请参加分享,刚才也听到了非常振奋人心的消息,今天是一个好日子,祝贺赵总今天融资1个亿。

这个时代科技和AI,某种程度上成为科技会议代名词,作为一个做AI做了20年的学者,我想分享一点我们不同的看法。我今天的题目既和教育相关也和AI相关,但是稍微不一样的是,到底谁在变革谁?

先介绍一下新东方,大家对新东方很熟悉了,不太一样的是,我们最新的数字大家未必很清楚。新东方除了英语学习很有名,其实在中小学全科教育,在中国也帮助了很多的孩子。新东方现在有1200个校区,5万间教室,6万名老师,去年班教超过1000万名学生。

当我们谈论AI+教育的时候,意味着有海量的数据,同时还拥有中国乃至世界上最全的教育场景,从3到30岁几乎全覆盖。

新东方在去年成立了新东方AI研究院,就是NAIR。新东方有26年的历史,这是非常年轻的团队,在新东方里是很新的团队,我们希望这支全新的团队能够跑得最快。

未来AI大势不可阻挡,AI+教育是新东方承担历史责任,我们要全力以赴。我们希望有更多的才俊投入到“AI+教育”造福全世界事业当中。

借着新东方平台,把AI+教育系统、产品快速实现大规模应用,不仅是一个创业的团队,我们更希望能够和现有业务紧密结合,和外面公司相比落地能力和技术更快。同时,我们进行商业模式创新;和投资伙伴一起构建AI+教育生态和跨领域合作。

简单谈一下AI变革教育,我们认为教育AI作战地图,新东方怎么做呢?我们从教、学、考、评、测、练等维度,同时也从AI技术维度、场景维度,无论是线上线下混合学习、学科维度共享这样一个作战地图。

举几个小小的例子,也是我们在过去一年快速落地的场景。

案例一,透明课堂。传统课堂是一个黑盒子,大家上过学也感同身受,教学质量更多时候靠老师的自觉和随机抽查而已,是一个很传统行业。当AI来了以后,一切发生巨大的变化,我们称之为“AI深度感知平台”,这个项目在新东方快速落地了,推出了一个边缘计算设备,称之为小N引擎。

第一个落地的项目在做“管”的层面,推出了“小n督课”,在很多城市、新东方几百个小区规模化的试点。今年新东方决定投资1个多亿,在新东方所有校区、所有教室落实督课,未来的新东方不光老师好,什么才叫老师好,AI告诉你。

案例二,教育在如何变革AI。大家可能很少听到,但是作为在一线实战的,深刻体会到如今的AI不光是大家耳熟能详变革这个、变革那个,当AI和传统行业结合的时候,通用化的AI已经不够了。

举几个例子,大家听过我的演讲大家感受到了,比方说我们进入教育的行业,我们会发现传统AI尽管在很多通用场景,但也面临很多挑战。

语音识别的挑战。比方说我在这里演讲,如果没有科大讯飞、微软百度引擎做语音识别,如果接入从麦克风接入的话,准确率达到99%是没有问题的,但是如果识音器在距离我20米之外,如果还有一定噪音的话,识别率直线下降的。但是在真实实战场景理想状态不存在,语音识别面临很多问题。

人脸识别的挑战。也是一样的,我们试图做行为分析,但新东方不做监控学生的事情,我们做的是提高教学质量,做的是有温度的AI,即使你这样做的时候,你会发现特别有挑战。你希望低成本,用最快的速度把AI的产品技术惠及更多的人,意味着更大挑战。你用最普通的摄像头做这件事情的时候你会发现,无论是超低分辨率、强大即便角度、遮挡下的人脸,这远比无人驾驶更现实的问题。

文字识别的挑战。OCR技术作为一个极其传统的技术,因为每个人手机几乎都用手指识别,进入教育行业大家发现如此挑战,你试图用一个手写板解决所有问题,不现实。因为你改变不了学生使用习惯,相当长一段时间之内还是会接受纸质板。如何线上线下结合,解决文字问题就会难倒一众教育公司。

自然语言处理的挑战。如果一个聊天场合,机器人不知道怎么办的时候可以闲聊,可是教育不是。当你教一个学生的时候,学生希望在最短的时间里知道准确答案。这个挑战我认为可能在一众的英文行业里面是最大的。

AR/VR的挑战。可实时交互的AI老师,从去年开始,如何用一个模型让你看不出它是一个假的人,逼真度要做到绝对逼真,有非常多的问题,除了图像上的问题,还有声音上的问题。我们做了一个实验,把市场上所有做AI直播做了一个测试,有一个规律发现,很少能挺过8分钟,8分钟之内基本上一个孩子能够发现这是一个假人,这对于AI+教育这件事来说是一个巨大挑战——如何挺过8分钟乃至于80分钟?

机器学习的挑战。大家普遍接受这个词了,过去5年大家对它不是很熟悉,被热炒一番以后。实际上机器学习才刚刚开始,现在AI是一个两三岁的孩子,我们做这行人来讲,连两三岁都不到。人从猿进化而来的,但是不能说人就是猿。大家总会去讲AI能够变革这个、变革那个,但是实际上从做AI的人来讲,当AI和教育结合的时候,AI不仅变革传统行业,真正落地的话,行业也在变革分化,不同行业的AI有截然不一样的理论、算法和系统。

我们重构教育AI能力体系,所有这些技术都是打引号的。联合行业内顶级合作伙伴一起做这件事情,这件事情难度非常大,实际上刚刚开始。不光要靠像新东方这样既有数据、又有场景同时有众多资源公司、行业龙头企业去做,同时需要最顶级研究机构加入,我们在进行深度合作,实际上是很开放的。给大家做一个小小的广告,如果有意愿从事AI+教育领域,无论是创业还是投资的朋友们,包括各个产业链条上的朋友们,如果愿意去投资AI+教育的未来的话,新东方绝对是你最好的合作伙伴。

最后一句话,“携手一起努力,让AI在教育领域落地开花”。

推荐文章

目 录摘 要 ........................................................7一、 简介 ....................................................... 9(一) 《国家人工智能研究和发展战略计划》的目的 ............. 9(二) 预期结果 ............................................ 11(三) 利用人工智能推进国家优先事项的愿景 .................. 121、 促进经济发展 ....................................... 122、 改善教育机会和生活质量 ............................. 133、 增强国家和国土安全 ................................. 14(四) 人工智能的现状 ...................................... 14二、 研发战略 .................................................. 18(一) 战略一:对人工智能研究进行长期投资 .................. 211、 提升基于数据发现知识的能力 ......................... 212、 增强人工智能系统的感知能力 ......................... 223、 了解人工智能的理论能力和局限性 ..................... 224、 研究通用人工智能 ................................... 235、 开发可扩展的人工智能系统 ........................... 246、 促进类人的人工智能研究 ............................. 247、 开发更强大和更可靠的机器人 ......................... 258、 推动人工智能的硬件升级 ............................. 269、 为改进的硬件创建人工智能 ........................... 26(二) 战略二:开发有效的人类与人工智能协作方法 ............ 281、 寻找人类感知人工智能的新算法 ....................... 292、 开发增强人类能力的人工智能技术 ..................... 303、 开发可视化和人机界面技术 ........................... 304、 开发更高效的语言处理系统 ........................... 31(三) 战略三:了解并解决人工智能的伦理、法律和社会影响 .... 331、 改进公平性、透明度和设计责任机制 ................... 332、 建立符合伦理的人工智能 ............................. 345 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 3、 设计符合伦理的人工智能架构 ......................... 34(四) 战略四:确保人工智能系统的安全可靠 .................. 361、 提高可解释性和透明度 ............................... 362、 提高信任度 ......................................... 363、 增强可验证与可确认性 ............................... 374、 保护免受攻击 ....................................... 385、 实现长期的人工智能安全和优化 ....................... 38(五) 战略五:开发用于人工智能培训及测试的公共数据集和环境 391、 开发满足多样化人工智能兴趣与应用的丰富数据集 ....... 392、 开放满足商业和公共利益的训练测试资源 ............... 403、 开发开源软件库和工具包 ............................. 40(六) 战略六:制定标准和基准以测量和评估人工智能技术 ...... 421、 开发广泛应用的人工智能标准 ......................... 422、 制定人工智能技术的测试基准 ......................... 423、 增加可用的人工智能测试平台 ......................... 434、 促进人工智能社群参与标准和基准的制定 ............... 44(七) 战略七:更好地了解国家人工智能人力需求 .............. 46三、 建议 ...................................................... 471、 建议一 ............................................. 472、 建议二 ............................................. 47附录:首字母缩写词 ............................................. 48译者注 ......................................................... 506 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 摘 要人工智能(AI)是一种具有巨大社会和经济效益的革新性技术。人工智能有可能彻底改变我们的生活、工作、学习、发现和沟通的方式。人工智能研究可以推进美国的国家优先任务,包括增加经济繁荣、改善教育机会和生活质量,以及加强国家和国土安全。由于这些潜在的益处,美国政府已经对人工智能研究投资多年。然而,与联邦政府感兴趣的任何重要技术一样,指导人工智能领域联邦资助研发的总体方向时不仅具有巨大的机会,还必须考虑到一些注意事项。 2016 年 5 月 3 日,政府宣布成立一个新的国家科学技术委员会(NSTC)机器学习和人工智能小组委员会,以帮助协调联邦在人工智能领域的活动。1 该小组委员会于 2016 年 6 月 15 日,请求网络和信息技术研究和发展计划(NITRD)小组委员会编写《国家人工智能研究和发展战略计划》(以下简称“AI 研发战略计划”或《战略》)。之后成立了一个 NITRD 人工智能工作组,以确定人工智能研发为联邦的战略重大计划,特别关注产业不可能解决的领域。 这项《战略》为联邦资助的人工智能研究制定了一系列目标,既包括政府内部的研究,也包括联邦资助的政府外部研究,例如在学术界。这项研究的最终目标是产生新的人工智能知识和技术,为社会提供一系列积极效益,同时尽量减少负面影响。为实现这一目标,《战略》确定了联邦资助人工智能研究的以下重大计划: 战略一:对人工智能研究进行长期投资。优先投资下一代人工智能,将促进新发现和洞察力,同时使美国在人工智能领域保持世界领先地位。 战略二:开发有效的人类与人工智能协作方法。并非取代人类,大多数人工智能系统将与人类合作以实现最佳性能。需要研究来创建人类和人工智能系统之间的有效交互。 战略三:了解并解决人工智能的伦理、法律和社会影响。我们期望人工智能技术根据我们持有人类同胞的正式和非正式规范表现。需要研究以了解人工智能的伦理、法律和社会影响,并开发设计符合伦理、法律和社会目标的人工智能系统的方法。 战略四:确保人工智能系统的安全可靠。在人工智能系统广泛使用之前,7 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 需要保证系统将以受控、充分定义和充分理解的方式安全地操作。需要进一步加强研究,以解决创建可靠、可信任和可信赖人工智能系统的挑战。 战略五:开发用于人工智能培训及测试的公共数据集和环境。训练数据集和资源的深度、质量和准确性显著影响人工智能性能。研究人员需要开发高质量的数据集和环境,并允许负责访问高质量数据集,以及测试和培训资源。 战略六:制定标准和基准以测量和评估人工智能技术。人工智能进步极其重要的是指导和评估人工智能进展的标准、测试基准、测试台和社区参与。需要进行额外的研究来开发广泛的评价技术。 战略七:更好地了解国家人工智能人力需求。人工智能的进步将需要一个强大的人工智能研究人员社区。需要更好地了解人工智能当前和未来研发人员需求,以帮助确保有足够的人工智能专家能够应对本计划中概述的战略研发领域。 《战略》最后提出了两方面建议: 建议一:开发一个人工智能研发实施框架,以抓住科技机遇,并支持人工智能研发投资的有效协调,与本计划的第一至六项战略保持一致。 建议二:研究创建和维持一个健全的人工智能研发队伍的国家愿景,与本计划的战略第七项保持一致。 8 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 一、简介(一)《国家人工智能研究和发展战略计划》的目的 1956 年,来自美国的计算机科学研究人员在新罕布什尔州的达特茅斯学院会面,讨论一个新兴的计算分支,即人工智能或 AI 的开创性思想。他们想象了一个世界,“机器使用语言,构成抽象和概念,解决现在人类的问题,并改善自己”。2 这次历史性会议为 AI 的政府和行业研究设置了几十年阶段,包括感知、自动推理/规划、认知系统、机器学习、自然语言处理、机器人和相关领域的进展。今天,这些研究进展已经产生影响我们日常生活的新兴经济部门,从制图技术到语音辅助智能手机,到邮件传递的手写识别,到金融交易,到智能物流,到垃圾邮件过滤,语言翻译,甚至更多。AI 进展也为精准医学、环境可持续性、教育和公共福利等领域的社会福利带来巨大的益处。3过去 25 年来,AI 方法的显著增加在很大程度上得益于统计和概率方法的采用,大量数据的可用性以及计算机处理能力的提高。在过去十年中,机器学习的 AI 子领域,使计算机能够从经验或例子中学习,已经表现出越来越准确的结果,引起了人们对 AI 近期前景更多的兴趣。虽然最近注意到例如深度学习等统计方法的重要性,4 但在其他各种领域 AI 也已经取得了影响深远的进展,例如:感知、自然语言处理、形式逻辑、知识展示、机器人技术、控制理论、认知系统架构、搜索和优化技术以及其他更多方面。 (注:深度学习是指使用多层神经网络的一系列方法的汇总,这些方法支持快速完成一度被认为无法自动化完成的任务。)AI 的最近成就对这些技术的最终方向和影响已经产生了重要问题:当前 AI技术的重要科学和技术瓶颈是什么?新的 AI 进展将提供什么积极,需要的经济和社会影响?如何继续安全和有益地使用 AI 技术?如何设计 AI 系统以符合伦理、法律和社会原则?这些进步对 AI 研发人员的影响是什么? AI 研发的情况变得越来越复杂。虽然政府过去和现在的投资造就了 AI 的突破性方法,但其他部门也已成为 AI 的重要贡献者,包括广泛的行业和非营利组织。这种投资环境提出了关于联邦投资在 AI 技术发展中适当作用的重要问题。联邦对 AI 投资的正确优先事项是什么,特别是在行业不可能投资的领域和时间框架方面?是否有机会进行产业和国际研发合作,推动美国的优先事项? 9 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 2015 年,美国政府对 AI 相关技术的未分类研发投资约为 11 亿美元。虽然这些投资已经产生了重要的新科学和技术,但是仍有机会在联邦政府之间进一步协调,使这些投资能够充分发挥潜力。5认识到 AI 的革新性影响,2016 年 5 月,白宫科学和技术政策办公室(OSTP)宣布了一个新的跨部门工作组,以探讨 AI 的利益和风险。6 OSTP 还宣布了一系列四个研讨会, 举办于 2016 年 5 月至 7 月的一段时间,旨在促进 AI的公众对话,并确定其所带来的挑战和机遇。研讨会的结果是伴随公共报告《为人工智能的未来准备》的一部分,与该计划一起发布。 在 2016 年 6 月,新的 NSTC 机器学习和人工智能小组委员会 - 它被特许在联邦政府、私营部门和国际上与 AI 的进展保持同步,并帮助协调联邦在 AI 的活动,任命 NITRD 国家协调办公室(NCO)创建《国家人工智能研究和发展战略计划》。小组委员会指示本计划应传达一系列明确的研发优先重点,以解决战略研究目标,将联邦投资重点放在行业不太可能投资的领域,并解决扩大和维持 AI 研发人才渠道的需求。 本 AI 研发战略计划的输入来自广泛的来源,包括联邦机构、AI 相关会议的公开讨论、投资于 IT 相关研发的所有联邦机构的 OMB 数据呼叫、投资 IT 相关研发,OSTP 信息请求 RFI),该信息请求向公众征询了有关美国如何为未来的 AI7做出最佳准备的意见,以及 AI 公开出版物的信息。 该计划对 AI 8的未来做出多个假想。首先,假设 AI 技术将继续发展至复杂巧妙并无所不在,而这多亏了政府和行业对 AI 研发的投资。第二,本计划假设AI 对社会的影响将继续增加,其中包括就业、教育、公共安全和国家安全,以及对美国经济增长的影响。第三,假设行业对 AI 的投资将继续增加,因为最近的商业成就已增加了研发投资的预期回报。同时,本计划假设一些重要的研究领域不太可能获得来自行业的足够投资,因为它们受制于典型的公共物品投资不足问题。最后,本计划假设对 AI 专业的需求将继续在行业、学术界和政府内部增长,从而对公共和私人造成劳动力压力。 与 AI 研发战略计划相关的其他研发战略计划和方案包括《联邦大数据研究和发展战略计划》、9《联邦网络安全研究和发展战略计划》、10《国家隐私研究和发展战略》、11《国家纳米技术倡议战略计划》、12《国家战略计算计划》、13《推进创新神经技术脑研究计划》14 与《国家机器人方案》。15 涉及某10 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 些 AI 子领域的其他战略研发计划和战略框架处于发展阶段,其中包括视频和图像分析、健康信息技术、机器人和智能系统。这些额外计划和框架将提供补助和详细叙述本 AI 研发战略计划的协同建议。 (二)预期结果 本 AI 研发战略计划超越了近期的 AI 功能,着眼于 AI 对社会和世界的长期变革影响。AI 的最新研究进展让 AI 的潜力更为乐观,使行业得到迅猛发展,并让 AI 方法变得商业化。然而,虽然联邦政府可以利用 AI 的行业投资,但许多应用领域和长期研究挑战不会存在明确的近期利润驱动因素,因此不可能完全由行业进行解决。联邦政府是长期高风险研究计划以及近期发展工作的主要资金来源,以实现部门或机构的具体要求,或解决私营企业并不从事的重要社会问题。因此,联邦政府应该强调重大社会重要性领域内的 AI 投资,这不针对消费市场的领域,如用于公共卫生、城市系统与智慧社区、社会福利、刑事司法、环境可持续性和国家安全的 AI,以及加速 AI 知识和技术生成的长期研究。 跨联邦政府的 AI 协调研发工作将增加这些技术的积极影响,并为决策者提供用于解决与使用 AI 相关的复杂政策挑战的所需知识。此外,协调方法将有助于美国利用 AI 技术的全部潜力来改善社会。 本 AI 研发战略计划定义了一个高级框架,该框架可用于确定 AI 的科学和技术差距,并跟踪用于填补这些差距的联邦研发投资。AI 研发战略计划确定了AI 短期和长期支持的战略优先事项,以此来解决重要的技术和社会挑战。然而,AI 研发战略计划并未为个别联邦机构定义具体的研究议程。相反,其为行政部门设定了目标,在这些目标中,各机构可以根据其任务、能力、权威和预算来决定优先顺序,以便整个研究组合能与 AI 研发战略计划保持一致。 AI 研发战略计划也并未制定 AI 的研究或使用政策,亦未就 AI 对就业和经济的潜在影响作更广泛的探讨。虽然这些议题对国家至关重要,但它们在题为“人工智能的机遇和挑战,这次会有所不同吗?”8 的经济顾问委员会报告中进行了讨论。 AI 研发战略计划侧重于有助定义和推进确保 AI 责任、安全和权益用途的政策的研发投资。 11 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 (三)利用人工智能推进国家优先事项的愿景 推动此 AI 研发战略计划是未来世界充满希望的愿景,AI 将给所有社会成员带来显著益处。人工智能的进一步进展可以提升社会中几乎所有部门的福利,16让国家优先事项获得进展,其中包括促进经济发展、改善生活质量和加强国家安全。这种潜在利益的例子包括: 1、促进经济发展新产品和服务可以创造新市场,并提高多个行业现有商品和服务的质量和效率。通过专业决策系统创造更有效的物流和供应链。17通过基于视觉的驾驶员辅助和自动/机器人系统,18 能更有效地运输产品。通过用于控制制造工艺和调度工作流程的新方法来改善制造业。19如何促进经济发展? (1)制造业:技术进步能在制造业,包括整个工程产品生命周期内引发新工业革命。更多使用机器人技术能使制造业回归陆上。20AI 可以通过更可靠的需求预测、提升运营和供应链灵活性,以及对改变制造业营运的影响进行更好的预测来加速生产能力。AI 可以创造更智能、更快、更便宜和更环保的生产流程,这能提高工人的生产率、提高产品质量、降低成本并改善工人的健康和安全。21 机器学习算法可以改善制造流程的调度并减少库存要求。22 消费者可以从现时的商业级 3-D 打印中获利。23(2)物流:私营部门制造商和托运人可以使用 AI,通过适配调度和路线来改进供应链管理。24通过自动调整天气、交通和意外事件的预期影响,让供应链更加牢固难以中断。25(3)金融:工业和政府可以使用 AI 提供多种规模的异常金融风险早期检测。26安全控制可以确保金融系统自动减少恶意行为的机会,例如市场操纵、欺诈和异常交易。27他们可以进一步提高效率并降低波动性和交易成本,同时预防系统性失效,例如定价泡沫和低估信用风险。28(4)交通:AI 可以增强所有交通方式,实质上影响所有类型的旅途的安全。29它可以用于结构安全监测和基础设施资产管理,提高公众信任,降低维修和重建成本。30 AI 可用于乘客和货运车辆,从而通过增强情景意识来提高安全性,并为司机和其他旅客提供实时路线信息。31 AI 应用还可以改善网络级移动12 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 13 性并减少整个系统的能源使用和运输相关的排放。32(5)农业:AI 系统可以创建通往可持续农业的途径,使农业产品的生产、加工、储存、分配和消费更灵活。AI 和机器人能收集有关作物的特定场所和时间数据,仅在它们需要的时间和地点才应用所需的投入(例如水、化学品和化肥),并填补农业劳动力的紧迫缺口。33(6)营销:AI 方法能使商业实体更好地配合供应与需求,增加用来资助进行中资助私营部门发展的税收。34 其能预测和识别消费者需求 35,使他们以更低的成本获得更好的产品和服务。 (7)通信:AI 技术可以最大限度地有效利用带宽和信息存储和检索的自动化。36 AI 可以改进数字通信的过滤、搜索、语言翻译和摘要,积极影响商业和我们的生活方式。37(8)科学和技术:AI 系统可以协助科学家和工程师阅读出版物和专利,使理论与之前的观察值更一致,使用机器人系统和模拟、进行实验,并设计新的设备和软件。382、改善教育机会和生活质量通过用于制定专有学习计划的虚拟导师来实现终身学习,以此根据每个人的兴趣、能力和教育需求进行自我挑战和参与其中。通过为每个人定做和调整的个性化健康信息,让人们能过上更健康和更积极的生活。智能家居和个人虚拟助手可以节省人们的时间,并减少每日重复任务所损失的时间。 AI 将如何改善教育机会和社会福利? (1)教育: AI-增强的学习型学校随处可见,通过其自动化辅导能衡量学生的发展 16。 AI 辅导员可补充面授教师,还可以因材施教。16 AI 工具可以促进终身学习并让所有社会成员获取新技能。16(2)医学:AI 能支持从大规模基因组研究(如全基因组关联研究,排序研究)中识别出遗传风险的生物信息学系统,并预测新药物的安全性和有效性。39 AI 技术允许进行多维度的数据评估,以研究公共卫生问题,并为医疗诊断和处方治疗提供决策支持系统。40 AI 技术为个人提供药物定制;由此可提高医疗效果、患者舒适度和减少浪费。41(3)法律:通过机器对法律个案史进行分析会变为普遍。42

热门文章

波士顿 - Neurala公司今天推出了一款新的视频标注工具,该工具由Brain Builder平台的人工智能辅助。“自动视频注释将显着加速神经网络的数据标注,从而帮助组织更快地培训和部署AI,”该公司表示。标记图像和视频对于开发用于建模和训练AI应用程序的数据集至关重要。Neurala  以软件即服务(SaaS)为基础提供Brain Builder,以帮助简化深度学习的创建,分析和管理。Neurala的联合创始人兼首席执行官Massimiliano Versace说:“人工智能数据准备的传统方法极其耗时且耗费人力,需要大量数据,需要经过精心和昂贵的注释。” “我们与Brain Builder的目标是通过易于使用的注释工具降低进入门槛。通过添加视频注释,我们能够进一步自动化数据准备,帮助组织将AI数据准备的时间和成本降低至少50%。“Neurala的专利和获奖技术源于2006年NASA,DARPA和空军研究实验室的神经网络研究。2013年,该公司加入了Techstars商业化计划。“每个人都想要AI,但他们不知道为什么,”Neurala的联合创始人兼首席运营官Heather Ames Versace说。“视频注释工具是终身AI技术堆栈的一部分,可提供透明度。”启用AI的注释可节省时间,提高工作效率当用户标记视频中的人物,物体或缺陷时,Neurala的新工具可以反复学习。Neurala表示,在用户在第一帧中标记感兴趣的项目后,该工具会自动在后续帧中注释相同的项目。例如,如果五个人输入一个框架,则在用户仅用一个人标记第一个框架后,它们将全部自动注释。相比之下,用户必须在他或她进入框架时标记每个人,这将花费更多的时间。此外,AI辅助视频注释可以提高标签处理速度并提高生产力,Heather Ames Versace告诉“ 机器人商业评论”。例如,用户可以注释10秒视频的一帧并获得300个注释的输出,而使用传统的注释方法,用户需要手动标记300个不同的图像才能获得相同的结果,Neurala说。“可解释性和信任始于数据,”Heather Ames Versace在最近的AI World大会上说。“通过在更短的时间内对数据进行注释和标记,团队可以进行更快速的原型设计。”用Brain Builder存钱“最终,它将帮助组织和开发人员更有效,更具成本效益地构建,培训和部署人工智能,”Massimiliano Versace说。“当涉及视觉AI的构建方式时,Neurala的Brain Builder平台已经在改变游戏规则。而现在,视频注释将进一步扩大可访问性和生产力的可能性。“Neurala说,Brain Builder还可以提供可观的投资回报。使用Brain Builder,组织可以以每小时6,750美元的视频进行注释,而没有它的则为13,500美元。Neurala发布  了一个教程  ,概述了使用Brain Builder在视频中标记对象的过程和好处。它还解释了如何使用TensorFlow训练语义分段网络。此外,本教程还引导观众了解跨多个GPU的培训步骤,这可以进一步缩短培训时间。