数据标注:拐点将至

数据、算力、算法是推动人工智能技术进步的“三驾马车”,其中数据是人工智能行业的发展基石,数据对人工智能很重要,“没有好的数据,人工智能没有未来”早已是行业共识。

新变化在于,随着人工智能技术落地场景,不同场景提出了更高质量、更多元的数据需求。

对视觉数据标注需求非常大的自动驾驶领域,很好地展现了数据标注服务的业态变化。

在2016年,人工智能随AlaphGo强势崛起并引发一系列创业、创新活动后,数据标注迎来第一次真正意义上的爆发,但由于当时各公司的人工智能业务多处于“跑Demo"、“做研发”的落地前环节——在质上,用标准数据集就可满足;在量上,规模也不可与现在相比。

所以当时的数据标注行业门槛较低,小作坊遍地开花,然而,从近两年的市场数据来看,第三方数据标注与审核公司开始变多;原本十分分散的数据标注行业走向专业化的拐点正在发生。随着人工智能在金融、医疗、安防等多个领域实现技术落地,人工智能公司对数据的使用逐渐有“大”的趋势,整个行业正在逐渐向多模态、多场景、高精度的方向发展。而促进这些变化的根本原因主要是三点:

一是成本问题。随着数据量越来越大,如果雇佣大量人力进行数据标注,大多数人工智能公司都无法攻克人员管理的挑战和承担随着数据量增长的巨额薪资。

二是质量问题。因为散兵游勇和小型工作室,较难在岗前培训、质量控制和数据安全上做足够的投入。

三是客户结构改变带来的新机会。即除了人工智能公司或有相关业务的科技公司外,各行各业的企业都开始更多投入数字化和人工智能,其中部分企业,一方面有对外采购技术服务的习惯和流程,一方面又缺乏非常先进、成熟的内部人工智能技术,比如无法像很多人工智能公司那样,快速开发自己的标注提效工具,这类公司会更加倚重专业的第三方服务,这扩大了整体市场规模。

在数据标注行业拐点将至的时候,对于专业人才的需求逐渐浮出水面,AI优评在人才培养方面率先迈出了步伐,通过与权威机构的官方合作,AI优评建立起一整套科学的人才评价模型,并且为通过评价考核的学员颁发由国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,为行业发展做出贡献。



推荐文章

今年人工智能成为了最火的行业之一,技术的不断发展,让人工智能不仅仅停留在研究人员的电脑上,更是实实在在的改变着我们的生活。 在电影中,我们经常看到劫匪带着面罩,举着枪抢银行的画面,其中有不计后果的亡命之徒,只为报复社会,有些自以为聪明绝顶,缺难逃法网,还有些也可能是这样年过花甲的老人?不论哪一部电影,套路基本一致,“趴在地上!不许动!”然后柜员瑟瑟发抖的把钱装进袋子。导演们似乎已经约定俗成,所有的抢银行都是这个套路,毫无创新。不过,看了今天这篇文章,可能导演和编剧们的后路也断了。 当劫匪经过艰难的思想斗争,演练了无数遍,背了n遍台词,闷了一大口酒之后,终于鼓起勇气,举起枪,冲进银行。闭着眼睛大喊:“不许动!我是抢银行的!都给我趴下!你!快给我装钱,所有都装进袋子里!”一阵冷风吹过,没有回应……劫匪慢慢睁开眼,发现银行里竟然一个人都没有?柜员呢?顾客呢?没人来取钱,那还能没有工作人员?这是撞了鬼??“欢迎来到自助无人银行,我是智能柜员机器人。”WTF?劫匪内心崩溃,这是什么命啊!抢银行竟然抢到了无人银行,笨贼也要有梦想啊。  以后电影里可能就得更新一下抢银行的桥段了,无人银行已经不再是想象出来的未来科技。现在,人工智能已经开始走进银行业,无人银行应运而生,中国建设银行宣布,第一家无人银行在上海开张。该银行采用智能银行系统,是一个综合智能大堂机器人、VTM机、零钱兑换机、智能投顾的综合服务系统,真正实现了无人化业务办理。顾客需要通过人脸扫描识别,通过人脸合验的才能进入银行;智能大堂机器人可以通过语音识别和语音交互,为顾客提供服务向导,使其方便快捷的了解所办业务的流程;VTM机是远程视频柜员机,在遇到智能系统无法解决的问题时,可以选择通过远程人工协助来完成业务办理;零钱兑换机则同自助取款机大同小异,帮助顾客完成零钱兑换业务;而智能投顾则是通过算法分析,依据顾客的个人理财需求,为顾客提供科学合理的理财组合。 整个无人银行,真正实现了智能化、无人化,具备保证高效办理业务、节约人工成本、提高银行资金安全等众多优势。实现无人银行的基础除了算法保证外,就是人脸识别、语音交互等技术,需要海量的人脸图片数据,支持人脸识别,有效的识别是否为本人操作;对于语音交互方面,需要采集各种方言、年龄、性别的各类语音数据,才能实现准确的语音交互功能,这也是整个无人银行系统的关键所在。 龙猫数据正是为人工智能提供各类图片数据、语音数据、视频数据的专业数据服务商,通过海量的精准数据,为人工智能提供更加科学的学习模板,让人工智能更加聪明。

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。