数据标注项目怎样报价?怎样对数据标注项目进行报价?

timg (1)_meitu_2.jpg

    AI人工智能的蓬勃发展也带动了与其相关的数据标注行业的爆发性成长,经过最近几年的迅猛发展之后,

目前数据标注行业的经营模式已经慢慢稳定下来。

    对于目前来说随着风投资金对行业的热情减小,无论是头部大型的人工智能企业还是其它互联网企业人

工智能项目的研发,他们对底层数据需求的市场把控,成本状况都已经非常的清楚,也因此成本管控与

之前来比较确实是越来越严格,高利润的数据标注项目已经成为过去。

    也正在基于目前数据的现况行业一部分人员对 “数据标注项目怎样报价怎样对数据标注项目进行报价?”

这个问题的认识越来越重视。怎样对项目进行合理的报价确保能拿到甲方项目已经成为标注公司项目经理

必须高度重视的问题。

22.jpg

     我们来分析下目前数据标注项目的成本状况以求最大可能来帮助大家对 “数据标注项目怎样报价?怎样

对数据标注项目进行报价?”这个问题有更深层次的理解?

    一、我们认为在对某一个甲方项目进行报价的时候首先要考虑我们公司当前的运营模式,比如专门做项

目外包的公司除了要对人力成本,项目工时、运营成本,前期项目测试成本等方面进行严格的核算外,还

要考虑项目外包出去后公司的利润点,承接项目公司保证质检前提下的利润,必竞如果是公司直接做项目

的话就是少去一部分分包公司的利润点,这样核算下来的合理报价才是项目经理所有通盘考虑的。

    二、人力成本是数据标注项目最大的成本,在标注工时不变的情况下怎么制定保证质量前提下合理的标

注效率,也是非常重要的。

     三、标注项目各项测试后一定要把项目标注规则,平台软件的问题,给充分搞清楚明白,尤其是标注

规则尽量做的边界清晰,避免模糊不清的规则要求,规则模糊不清最容易出现项目数据返工的问题。如果

确实是项目规则不是很容易限定边界那就需要和甲方沟通清楚,必要时把边部分成本也得核算进去。

     四、项目各方的沟通成本,畅通高效的沟通反馈速度对项目进度的推进也是非常的重要的,良好高效

的沟通反馈速度对项目问题解决,项目进度的推进也是非常重要的一环。这一点做为项目经理必须要深刻

的明白这一点。确保高效快速的沟通反馈渠道是项目施实的重要前提。

    以上就是小编对标注项目报价基于标注时间效率、软件、规则界定,沟通效率方面的分析,有于篇幅限

制很多细节上问题就没有在这里细讲了,希望大家在标注项目管理施实的时候注意细节问题带来的成本风险。

    同时也希望这篇文章能对大家关于“数据标注项目怎样报价?怎样对数据标注项目进行报价?”这个问题

有一定的帮助。

    如果大家对数据标注项目方面有兴趣的可以经常关注我们点我科技的平台找标注网,多进行标注项目交流。

推荐文章

        来自巴西阿雷格里港大学的学者发表于ECCV2018的论文《License Plate Detection and Recognition in Unconstrained Scenarios》,给出了一整套完整的车牌识别系统设计,着眼于解决在非限定场景有挑战的车牌识别应用,其性能优于目前主流的商业系统,代码已经开源,非常值得参考。作者信息:展示了该系统在室外环境,角度变换等场景强大的车牌定位、识别能力。 很多车牌识别论文中常用的数据库往往是正面拍摄的,但实际应用中,各种可能的情况都有,作者首先给出了一些对车牌识别有挑战的数据示例:该文提出的系统很好的解决了这类有挑战的车牌识别问题。系统架构作者提出的车牌识别系统,包含车牌识别的所有环节,主要有三大步骤:车辆检测、车牌检测与校正、OCR。下图展示了整个系统流程:输入图像首先使用YOLOv2进行车辆检测(作者使用原始的YOLOv2,没有做任何改动),检测到的车辆图像再输入到WPOD-NET网络,进行车牌检测和车票卷曲校正系统的回归,然后对车牌进行校正输入到OCR-Net网络,识别出车牌字符。WPOD-NET用于车牌区域检测于校正系统回归示意图:平面目标的全卷积网络检测,对于系统输出的车牌区域特征图,划分成(m,n)个cell,查找高目标概率的cell,根据这些cell的位置,计算将该区域转换成方形车牌的仿射系数。WPOD-NET架构图为训练WPOD-NET对数据进行了各种常规的数据增广:车牌识别OCR部分使用一种改进的YOLO网络,其架构如下为训练该OCR系统也进行了大量数据增广:为评估该系统,作者收集了常用的数据集,并自建了挑战的数据集CD-HARD。实验结果作者将该文系统与目前主流的商业车牌识别系统相比较,包括OpenALPR、Sighthound、Amazon Rekognition。在整个数据集上取得了远超过其他系统的性能,在OpenALPR数据集上取得了与最好系统相匹敌的性能,尤其在具有挑战的CD-HARD数据集上取得了异常明显的性能优势。一些校正并识别后的车牌示例:运行速度在配置为Intel Xeon CPU 、12Gb RAM、 NVIDIA Titan X GPU的机器上,平均达到5fps。工程主页:http://www.inf.ufrgs.br/~crjung/alpr-datasets/https://github.com/sergiomsilva/alpr-unconstrained转载来源:《ECCV18|这篇论文开源的车牌识别系统打败了目前最先进的商业软件》

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。