数据标注项目怎样报价?怎样对数据标注项目进行报价?

timg (1)_meitu_2.jpg

    AI人工智能的蓬勃发展也带动了与其相关的数据标注行业的爆发性成长,经过最近几年的迅猛发展之后,

目前数据标注行业的经营模式已经慢慢稳定下来。

    对于目前来说随着风投资金对行业的热情减小,无论是头部大型的人工智能企业还是其它互联网企业人

工智能项目的研发,他们对底层数据需求的市场把控,成本状况都已经非常的清楚,也因此成本管控与

之前来比较确实是越来越严格,高利润的数据标注项目已经成为过去。

    也正在基于目前数据的现况行业一部分人员对 “数据标注项目怎样报价怎样对数据标注项目进行报价?”

这个问题的认识越来越重视。怎样对项目进行合理的报价确保能拿到甲方项目已经成为标注公司项目经理

必须高度重视的问题。

22.jpg

     我们来分析下目前数据标注项目的成本状况以求最大可能来帮助大家对 “数据标注项目怎样报价?怎样

对数据标注项目进行报价?”这个问题有更深层次的理解?

    一、我们认为在对某一个甲方项目进行报价的时候首先要考虑我们公司当前的运营模式,比如专门做项

目外包的公司除了要对人力成本,项目工时、运营成本,前期项目测试成本等方面进行严格的核算外,还

要考虑项目外包出去后公司的利润点,承接项目公司保证质检前提下的利润,必竞如果是公司直接做项目

的话就是少去一部分分包公司的利润点,这样核算下来的合理报价才是项目经理所有通盘考虑的。

    二、人力成本是数据标注项目最大的成本,在标注工时不变的情况下怎么制定保证质量前提下合理的标

注效率,也是非常重要的。

     三、标注项目各项测试后一定要把项目标注规则,平台软件的问题,给充分搞清楚明白,尤其是标注

规则尽量做的边界清晰,避免模糊不清的规则要求,规则模糊不清最容易出现项目数据返工的问题。如果

确实是项目规则不是很容易限定边界那就需要和甲方沟通清楚,必要时把边部分成本也得核算进去。

     四、项目各方的沟通成本,畅通高效的沟通反馈速度对项目进度的推进也是非常的重要的,良好高效

的沟通反馈速度对项目问题解决,项目进度的推进也是非常重要的一环。这一点做为项目经理必须要深刻

的明白这一点。确保高效快速的沟通反馈渠道是项目施实的重要前提。

    以上就是小编对标注项目报价基于标注时间效率、软件、规则界定,沟通效率方面的分析,有于篇幅限

制很多细节上问题就没有在这里细讲了,希望大家在标注项目管理施实的时候注意细节问题带来的成本风险。

    同时也希望这篇文章能对大家关于“数据标注项目怎样报价?怎样对数据标注项目进行报价?”这个问题

有一定的帮助。

    如果大家对数据标注项目方面有兴趣的可以经常关注我们点我科技的平台找标注网,多进行标注项目交流。

推荐文章

日前,李克强总理在上海考察时对运用人工智能和大数据改善政府服务提出了新要求。准确把握人工智能和大数据的新风口,需要进一步转变思路、创新模式、推动公众参与。   防范出现“眉毛胡子一把抓”   实践中,由于工作推进的思路与方法不清晰,不少智能化应用非但没有减少政府部门的工作量,反而给一些主管部门新增了负担。   例如,在智慧交通项目推进中,技术公司在不懂政府管理关键节点情形下开发的智能化系统,倾向于将城市管“死”。这不仅增加了相关部门的工作负担,而且损害了行政韧性。   同时,由于智能化管理系统的流程设置问题,当自上而下的压力型行政系统遇到程序化的智能化应用系统之后,原本应该走进社区、走向一线、走入群众的工作在“规范化管理、精准化服务、智能化发现”的程序设计思路中遭到弱化。结果是,政府投入增加了,基层工作人员更忙了,政府服务测评分数反而下降了。   为此,有必要改善政府部门对人工智能和大数据应用的管理感受度,推动应用场景开发的供给侧改革。   例如,为解决智慧交通管理有效关键信息抓取少、无用信息抓取多、系统使用效能感不强的问题,政府部门可探索政企合作的供给侧改革模式,将交通管理的关键信息和关键节点重点列出、重点研究、重点解决,以此防范出现“胡子眉毛一把抓”的问题。   以问题为导向实现系统迭代   现实中,由于分布式开发机制与自上而下条块体制结合度不够,企业参与城市智能化管理系统开发的获得感往往不足。同时,在条块体制下,下级政府部门的系统往往既要兼容上级条线管理部门,又要兼容本级政府部门,以实现政府系统的互联互通。在多重要求之下,“多方满意方案”的系统性能往往被打折扣。   要提升企业参与人工智能和大数据应用开发的获得感,有必要创新开发模式,改变现有的整体外包式或分布式开发路径依赖。   一方面,在城市智能化管理的应用程序开发过程中,应事先明确技术开发标准,定义好可兼容的信息存储格式和数据接口,避免产生不同条块部门反复重建系统的问题。   另一方面,一级政府部门应以公司化的运作模式建立起自己的技术团队,在初期进行主系统程序招标的基础之上,将政府部门自身的技术团队不断融入主系统的开发和维护之中,从而实现城市智能化管理主系统的稳定与可持续。   处理好安全、便民、隐私关系   由于前期缺乏充分论证和公众参与,本应以“安全、便民、高效、公正”为导向的智能化系统,在实际应用中反而给公众带来了新的烦恼。   要提升公众对于人工智能和大数据应用的感受度,需着力处理好两对关系:   一是安全与便民的关系。   城市公共安全固然重要,但智能化管理不能因安全问题而因噎废食,不能为了解决安全问题而将城市“管死”、将公众“圈住”、给居民“添堵”。这就要求在前期应用场景规划中,引入更多的公众参与,考虑到多样化的需求和场景,实现城市智能化管理安全与便民的平衡。   二是安全与隐私的关系。   随着社会的现代化,在主要以职业界定身份和社会关系网络的城市社会中,对多元价值的包容成为现代城市文明的主要标志。在不危害社会公共秩序、不影响其他人生活的前提下最大限度地实现自我选择和自我发展,就对个人隐私保护提出了更高要求。为此,城市智能化管理的系统开发应准确划分公共领域和私人领域的范围,做到安全保护与个人隐私、法治与人文关怀的兼顾。   探索高效管理与透明管理   总的来看,对焦新风口,推动人工智能和大数据的深度应用,是推动政府管理转型升级的重大机遇。   首先,人工智能和大数据为高效的城市管理系统建设提供了可能。纵观人类百年城市史,行政系统低效、腐败、管理不善是除外敌入侵之外的最大威胁。智能化管理通过抓取有效信息,有望实现高效管理和透明管理。这是城市治理的一次重大突破。   其次,在人工智能和大数据应用中,政府代表的公平价值与企业代表的效率价值可以尝试进行融合,进而达成社会治理创新的共识。   再次,从更长的历史时段来看,治理体系和治理能力现代化最终要建立在命运共同体之上,而人工智能和大数据的应用通过多主体的互融互通,客观上有助于加速这一探索进程。

热门文章

波士顿 - Neurala公司今天推出了一款新的视频标注工具,该工具由Brain Builder平台的人工智能辅助。“自动视频注释将显着加速神经网络的数据标注,从而帮助组织更快地培训和部署AI,”该公司表示。标记图像和视频对于开发用于建模和训练AI应用程序的数据集至关重要。Neurala  以软件即服务(SaaS)为基础提供Brain Builder,以帮助简化深度学习的创建,分析和管理。Neurala的联合创始人兼首席执行官Massimiliano Versace说:“人工智能数据准备的传统方法极其耗时且耗费人力,需要大量数据,需要经过精心和昂贵的注释。” “我们与Brain Builder的目标是通过易于使用的注释工具降低进入门槛。通过添加视频注释,我们能够进一步自动化数据准备,帮助组织将AI数据准备的时间和成本降低至少50%。“Neurala的专利和获奖技术源于2006年NASA,DARPA和空军研究实验室的神经网络研究。2013年,该公司加入了Techstars商业化计划。“每个人都想要AI,但他们不知道为什么,”Neurala的联合创始人兼首席运营官Heather Ames Versace说。“视频注释工具是终身AI技术堆栈的一部分,可提供透明度。”启用AI的注释可节省时间,提高工作效率当用户标记视频中的人物,物体或缺陷时,Neurala的新工具可以反复学习。Neurala表示,在用户在第一帧中标记感兴趣的项目后,该工具会自动在后续帧中注释相同的项目。例如,如果五个人输入一个框架,则在用户仅用一个人标记第一个框架后,它们将全部自动注释。相比之下,用户必须在他或她进入框架时标记每个人,这将花费更多的时间。此外,AI辅助视频注释可以提高标签处理速度并提高生产力,Heather Ames Versace告诉“ 机器人商业评论”。例如,用户可以注释10秒视频的一帧并获得300个注释的输出,而使用传统的注释方法,用户需要手动标记300个不同的图像才能获得相同的结果,Neurala说。“可解释性和信任始于数据,”Heather Ames Versace在最近的AI World大会上说。“通过在更短的时间内对数据进行注释和标记,团队可以进行更快速的原型设计。”用Brain Builder存钱“最终,它将帮助组织和开发人员更有效,更具成本效益地构建,培训和部署人工智能,”Massimiliano Versace说。“当涉及视觉AI的构建方式时,Neurala的Brain Builder平台已经在改变游戏规则。而现在,视频注释将进一步扩大可访问性和生产力的可能性。“Neurala说,Brain Builder还可以提供可观的投资回报。使用Brain Builder,组织可以以每小时6,750美元的视频进行注释,而没有它的则为13,500美元。Neurala发布  了一个教程  ,概述了使用Brain Builder在视频中标记对象的过程和好处。它还解释了如何使用TensorFlow训练语义分段网络。此外,本教程还引导观众了解跨多个GPU的培训步骤,这可以进一步缩短培训时间。