2021了你还不知道数据标注?人工智能为什么需要数据标注


2021了你还不知道数据标注?人工智能为什么需要数据标注


编写时间: 2021-2-22      来源:搜狐新闻


“得数据者,得人工智能”。如今人工智能早已在我们的生活中屡见不鲜,像“Siri”、“指纹解锁”、“人脸识别”等等都属于人工智能的范畴,然而人工智能的上游基础产业,数据标注却鲜为人知。数据标注是一个极为庞大的产业,在数标行业内部,从业者也必将随着AI行业而一同进入细分市场追逐阶段,可谓机遇与挑战并行,为创业者创造力大量的机会,为社会造就了大量新兴的就业机会。那么数据标注的应用场景都有哪些,它为什么如此火热呢?

数据标注的应用场景

人脸识别

人脸识别系统

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行多年龄段、多角度、多表情、多光线的人脸图像采集,从而完成身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别(视觉识别技术的一种应用)在国内的应用大致经历从公共安全领域扩展到商业领域的过程。最初,机场、高铁站以及酒店等场景使用这项技术对个人身份进行验证,随后商业银行也开始采用人脸识别实现远程开户。再之后,刷脸支付、刷脸门禁也相继出现,人脸识别逐渐从少数有限场景渗透到人们的日常生活之中,目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

智能交通

近年来,随着人工智能浪潮的兴起,无人驾驶、智能交通安全系统一度走进我们的生活,国内许多公司纷纷投入到自动驾驶和无人驾驶的研究,例如百度启动的“百度无人驾驶汽车”计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

再比如近日上海街头出现的地锁停车黑科技,当你停好车,协管员就会协管员将一张停车提示卡置于门把手上。停车7分钟后,停车位下的指示灯由绿转红,金属地锁升起,卡住车身底盘。取车时,用手机扫了扫地面上的二维码,停车时长、费用信息一目了然。支付停车费后,地面指示灯由红转绿,地锁降下,电子发票也能实时获取。

智能停车位

而这些都要依赖于人工智能数据标注的介入,对于行车视频进行采集,路况进行提取,停车点进行标注,包括D点云障碍物、红绿灯、车道灯及高精地图。为行人识别、车辆识别、红绿灯识别、车道线识别等技术提供精确训练数据,为智能交通保驾护航。

智能语音

智能语音即实现人与机器以语言为纽带的通信。人类大脑皮层每天处理的信息中,声音信息占20%,它是沟通最重要的纽带。人类对机器语音识别的探索始于20世纪50年代,迄今已逾70年。2016年,在深度神经网络的帮助下,机器语音识别准确率第一次达到人类水平,意味着智能语音技术落地期到来。

数据标注主要在语音方面的应用场景主要是语音语言采集,语音内容加工处理,情感判断,语音文字等转化。为语音识别(ASR)、语音合成(TTS)等提高质量语音数据让您的智能设备更懂得用户心声。我们常用到的小爱同学、天猫静音,手机语音输入,甚至包括有时候接到的营销电话都有着智能语音的身影。

图像处理之医学图像

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

得数据者,得人工智能

人工智能主要算法应用领域集中在计算机视觉、语音识别/语音合成,以及自然语言处理三个方面。

  • 1.图像方面一个新研发的计算机视觉算法需要上万张到数十万张不等的标注图片训练,新功能的开发需要近万张图片训练,而定期优化算法也有上千张图片的需求,一个用于智慧城市的算法应用,每年都有数十万张图片的稳定需求。

  • 2.语音方面头部公司累计应用的标注数据集已达百万小时以上,每年需求仍以20%-30%的增速上升,要求数据服务商不仅要掌握专业的声学知识、数据标注经验,还要拥有语音合成的算法能力。

  • 3.自然语言处理方面随着工业、医疗、教育的AI应用产品进一步爆发,将会有更多交互方式出现,自然语义数据处理的需求将会持续增长,有望成为继图像、语音之后的第三大增量市场。

这些海量的数据几乎全部依赖数据标注师手工进行标注,数据标注行业的缺口十分可观,并且数据标注已经在各行业产生了极广的应用,行业也开始逐渐升级,走向产业化。在行业发展的过程中,行业人才的培养必然是最大的内驱力。

“得数据者,得人工智能”。未来,随着AI应用场景逐渐多领域化,在数据标注行业内部,从业者也必将随着AI行业而一同进入细分市场追逐阶段,可谓机遇与挑战并行。


推荐文章

数据标注师:AI学习的老师如果把人工智能比作一个懵懂的幼童,那么把数据标注师看做是人工智能的“老师”也毫不为过。人工智能机器要想认识世界需要依赖大量已经标注过的数据,数据标注让机器理解并认识世界,是人工智能金字塔的基础力量。相比于人工智能行业的繁荣与夺目,数据标注则显得似乎没有那么耀眼,甚至在前期还被贴上了很多偏见。殊不知,在人工智能高速的发展进程之下,数据标注早已经实现了“脱胎换骨”,成为了新时代下最炙手可热的行业之一。AI 技术在全场景的落地以及大数据时代的到来产生了海量、指数级别的数据,数据获取也相对变得容易,然而,想要获得大量的已标注数据却并不容易,往往需要付出很大的人力、物力、财力成本。在医疗 AI 等专业门槛较高的细分领域,缺乏标注数据就成了阻碍行业发展的“绊脚石”,人工智能的进一步发展,不仅仅依赖于自身金属的进一步成熟,也同样依赖于数据标注行业的发展进步。目前,数据标注的类型主要有:拼音标注、韵律标注、词性标注、音素时间点标注、语音转写、分类标注、打点标注、标框标注、区域标注等等。由于需要标注的数据规模庞大且成本较高,一些互联网巨头及一些 AI 公司很少自己设有标注团队,大多交给专业的数据标注公司完成。数据标注行业的发展越来越趋向于专业化,早期多以中文数据标注为主,现在随着多语种、方言、个性化标注等发展标注需求的增加,并且,随着人工智能开始逐渐渗透到各个行业之中,在数据标注时,如果没有相关行业的专业知识,便不可能完成标注的工作。这些都在提示这数据标注行业对于专业人才的需求。事实显示也的确是如此,目前,尽管市面上有着大量对于专业数据标注师人才的需求,但是数据标注人才的供给却远远无法满足当下的需求。如何培养人才,建立行业准入标准与合格的人才培养机制是关键。AI优评同权威机构合作,共同构建起了一整套专业科学的数据标注人才评价体系,学员可以在AI优评通过考核获得国家职业资格培训鉴定实验基地统一核发的《人工智能技术服务-数据标注与审核》高新技术能力证书,并可以直接对接到人才需求方实现就业,为行业输送更多专业的人才,以此推动行业的进一步发展。

热门文章

简单讲:互联网数据标注员是借助电脑或者移动设备对一些原始的数据进行处理,生产出满足AI公司机器学习需要数据的一群人。按照数据处理对象的不同,工作内容也会有差别,标注员的工作内容可以分为:分类;框选;注释;标记。按照所处公司的不同,标注员的工作方式也会有差别:有的人工智能公司处于对数据安全性考虑会自建标注团队,在这些公司工作的标注员可以保证自己工作内容不会出现太大变动;但一些服务于人工智能公司非专业外包公司标注员的工作则是项目制的,一个项目忙完紧接着做另一个项目,这样工作内容连续性较差,对一种类型的项目经验也不会积累的太多。就目前来说,人工智能还处于人工增长阶段,机器依然需要大量的数据进行训练,测试。标注员在当下也会一直存在,而且从业群体会越来越多,所以暂时不用担心这份职业会不会短期消失。就标注员从业来说,建议选择人工智能公司和专业的数据公司,这样可以保证自己在一个方向上了解的足够深入。就职场晋升来说,以牛牛数据为例:标注员——项目经理——项目总监——数据运营总监。首先谈谈什么是数据标注。数据标注有许多类型,如分类、画框、注释、标记等等,我们会在下面详谈。要理解数据标注,得先理解AI其实是部分替代人的认知功能。回想一下我们是如何学习的,例如我们学习认识苹果,那么就需要有人拿着一个苹果到你面前告诉你,这是一个苹果。然后以后你遇到了苹果,你才知道这玩意儿叫做“苹果”。类比机器学习,我们要教他认识一个苹果,你直接给它一张苹果的图片,它是完全不知道这是个啥玩意的。我们得先有苹果的图片,上面标注着“苹果”两个字,然后机器通过学习了大量的图片中的特征,这时候再给机器任意一张苹果的图片,它就能认出来了。这边可以顺带提一下训练集和测试集的概念。训练集和测试集都是标注过的数据,还是以苹果为例子,假设我们有1000张标注着“苹果”的图片,那么我们可以拿900涨作为训练集,100张作为测试集。机器从900张苹果的图片中学习得到一个模型,然后我们将剩下的100张机器没有见过的图片去给它识别,然后我们就能够得到这个模型的准确率了。想想我们上学的时候,考试的内容总是不会和我们平时的作业一样,也只有这样才能测试出学习的真正效果,这样就不难理解为什么要划分一个测试集了。我们知道机器学习分为有监督学习和无监督学习。无监督学习的效果是不可控的,常常是被用来做探索性的实验。而在实际产品应用中,通常使用的是有监督学习。有监督的机器学习就需要有标注的数据来作为先验经验。在进行数据标注之前,我们首先要对数据进行清洗,得到符合我们要求的数据。数据的清洗包括去除无效的数据、整理成规整的格式等等。具体的数据要求可以和算法人员确认。二、常见的几种数据标注类型1.分类标注:分类标注,就是我们常见的打标签。一般是从既定的标签中选择数据对应的标签,是封闭集合。如下图,一张图就可以有很多分类/标签:成人、女、黄种人、长发等。对于文字,可以标注主语、谓语、宾语,名词动词等。<img src="https://pic2.zhimg.com/50/v2-df93dc0a7e8a5fe387dc3774748b5f05_hd.jpg" data-caption="" data-size="normal" data-rawwidth="700" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="700" data-original="https://pic2.zhimg.com/v2-df93dc0a7e8a5fe387dc3774748b5f05_r.jpg">适用:文本、图像、语音、视频应用:脸龄识别,情绪识别,性别识别2.标框标注:机器视觉中的标框标注,很容易理解,就是框选要检测的对象。如人脸识别,首先要先把人脸的位置确定下来。行人识别,如下图。<img src="https://pic2.zhimg.com/50/v2-7824903d6d840e2bb08d96b5c2fa5874_hd.jpg" data-caption="" data-size="normal" data-rawwidth="591" data-rawheight="398" class="origin_image zh-lightbox-thumb" width="591" data-original="https://pic2.zhimg.com/v2-7824903d6d840e2bb08d96b5c2fa5874_r.jpg">适用:图像应用:人脸识别,物品识别3.区域标注:相比于标框标注,区域标注要求更加精确。边缘可以是柔性的。如自动驾驶中的道路识别。<img src="https://pic3.zhimg.com/50/v2-4bc1dd2278182acf94fc426d7e6f2dc1_hd.jpg" data-caption="" data-size="normal" data-rawwidth="601" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="601" data-original="https://pic3.zhimg.com/v2-4bc1dd2278182acf94fc426d7e6f2dc1_r.jpg">适用:图像应用:自动驾驶4.描点标注:一些对于特征要求细致的应用中常常需要描点标注。人脸识别、骨骼识别等。<img src="https://pic4.zhimg.com/50/v2-5e24f394516c75e45942c37ba0da85c0_hd.jpg" data-caption="" data-size="normal" data-rawwidth="583" data-rawheight="387" class="origin_image zh-lightbox-thumb" width="583" data-original="https://pic4.zhimg.com/v2-5e24f394516c75e45942c37ba0da85c0_r.jpg">适用:图像应用:人脸识别、骨骼识别5.其他标注:标注的类型除了上面几种常见,还有很多个性化的。根据不同的需求则需要不同的标注。如自动摘要,就需要标注文章的主要观点,这时候的标注严格上就不属于上面的任何一种了。(或则你把它归为分类也是可以的,只是标注主要观点就没有这么客观的标准,如果是标注苹果估计大多数人标注的结果都差不多。)三、有什么发展前途?数据标注员可以说是AI消灭了一部分工作又创造出来的一种工作。在未来AI发展良好的前提下,数据的缺口一定是巨大的。可以预见3-5年内数据标注员的需求会一直存在。至于发展,其实所谓一些熟能生巧的工作,都是有被替代掉的风险的。深度学习解决的一件事情就是熟能生巧。在这个岗位上,其实你的一些想法就代表了AI的想法,AI会根据你标注的数据进行学习,想想还是有点成就感的。数据标注可以说是AI的入门级岗位,未来可转向其他AI岗位。如项目实施顾问等,这就要求更多的工作技能,需要再工作中积累。作者:跹尘链接:https://www.zhihu.com/question/30654399/answer/264828926来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。