2021了你还不知道数据标注?人工智能为什么需要数据标注


2021了你还不知道数据标注?人工智能为什么需要数据标注


编写时间: 2021-2-22      来源:搜狐新闻


“得数据者,得人工智能”。如今人工智能早已在我们的生活中屡见不鲜,像“Siri”、“指纹解锁”、“人脸识别”等等都属于人工智能的范畴,然而人工智能的上游基础产业,数据标注却鲜为人知。数据标注是一个极为庞大的产业,在数标行业内部,从业者也必将随着AI行业而一同进入细分市场追逐阶段,可谓机遇与挑战并行,为创业者创造力大量的机会,为社会造就了大量新兴的就业机会。那么数据标注的应用场景都有哪些,它为什么如此火热呢?

数据标注的应用场景

人脸识别

人脸识别系统

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行多年龄段、多角度、多表情、多光线的人脸图像采集,从而完成身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别(视觉识别技术的一种应用)在国内的应用大致经历从公共安全领域扩展到商业领域的过程。最初,机场、高铁站以及酒店等场景使用这项技术对个人身份进行验证,随后商业银行也开始采用人脸识别实现远程开户。再之后,刷脸支付、刷脸门禁也相继出现,人脸识别逐渐从少数有限场景渗透到人们的日常生活之中,目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

智能交通

近年来,随着人工智能浪潮的兴起,无人驾驶、智能交通安全系统一度走进我们的生活,国内许多公司纷纷投入到自动驾驶和无人驾驶的研究,例如百度启动的“百度无人驾驶汽车”计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

再比如近日上海街头出现的地锁停车黑科技,当你停好车,协管员就会协管员将一张停车提示卡置于门把手上。停车7分钟后,停车位下的指示灯由绿转红,金属地锁升起,卡住车身底盘。取车时,用手机扫了扫地面上的二维码,停车时长、费用信息一目了然。支付停车费后,地面指示灯由红转绿,地锁降下,电子发票也能实时获取。

智能停车位

而这些都要依赖于人工智能数据标注的介入,对于行车视频进行采集,路况进行提取,停车点进行标注,包括D点云障碍物、红绿灯、车道灯及高精地图。为行人识别、车辆识别、红绿灯识别、车道线识别等技术提供精确训练数据,为智能交通保驾护航。

智能语音

智能语音即实现人与机器以语言为纽带的通信。人类大脑皮层每天处理的信息中,声音信息占20%,它是沟通最重要的纽带。人类对机器语音识别的探索始于20世纪50年代,迄今已逾70年。2016年,在深度神经网络的帮助下,机器语音识别准确率第一次达到人类水平,意味着智能语音技术落地期到来。

数据标注主要在语音方面的应用场景主要是语音语言采集,语音内容加工处理,情感判断,语音文字等转化。为语音识别(ASR)、语音合成(TTS)等提高质量语音数据让您的智能设备更懂得用户心声。我们常用到的小爱同学、天猫静音,手机语音输入,甚至包括有时候接到的营销电话都有着智能语音的身影。

图像处理之医学图像

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

得数据者,得人工智能

人工智能主要算法应用领域集中在计算机视觉、语音识别/语音合成,以及自然语言处理三个方面。

  • 1.图像方面一个新研发的计算机视觉算法需要上万张到数十万张不等的标注图片训练,新功能的开发需要近万张图片训练,而定期优化算法也有上千张图片的需求,一个用于智慧城市的算法应用,每年都有数十万张图片的稳定需求。

  • 2.语音方面头部公司累计应用的标注数据集已达百万小时以上,每年需求仍以20%-30%的增速上升,要求数据服务商不仅要掌握专业的声学知识、数据标注经验,还要拥有语音合成的算法能力。

  • 3.自然语言处理方面随着工业、医疗、教育的AI应用产品进一步爆发,将会有更多交互方式出现,自然语义数据处理的需求将会持续增长,有望成为继图像、语音之后的第三大增量市场。

这些海量的数据几乎全部依赖数据标注师手工进行标注,数据标注行业的缺口十分可观,并且数据标注已经在各行业产生了极广的应用,行业也开始逐渐升级,走向产业化。在行业发展的过程中,行业人才的培养必然是最大的内驱力。

“得数据者,得人工智能”。未来,随着AI应用场景逐渐多领域化,在数据标注行业内部,从业者也必将随着AI行业而一同进入细分市场追逐阶段,可谓机遇与挑战并行。


推荐文章

随着人工智能落地商业化进入快车道,无人驾驶、人脸识别、智慧安防等领域成为了热门的应用场景,AI公司关注的重点开始聚焦于产业落地能力上。作为人工智能行业的基础,数据是实现这一能力的决定性条件之一。因此,为机器学习算法训练提供高质量的标注数据服务成为了决定人工智能应用高度的重要条件之一。相关资料统计显示,2025年产生的数据量将高达163ZB,其中90%是非结构化数据。这些非结构化数据只有经过清洗与标注才能被唤醒价值,这就产生了源源不断的清洗与标注需求。数据标注行业因此得以迅速繁荣扩张。随着产业落地成为行业发展大势,更具前瞻性的海量数据集产品和高度定制化服务成为了数据标注行业的主要服务形式。然而,由于数据标注行业存在门槛较低、服务质量参差不齐等问题,需求方在选择数据服务时往往会遇到数据质量、服务效率、数据安全、管理能力、服务能力等痛点,这些痛点已成为阻碍行业发展的核心问题。1. 数据质量监督学习下的深度学习算法训练十分依赖于标注数据,数据集质量的高低将直接决定算法模型的效果。然而,目前数据标注行业存在很严重的数据质量问题。相关数据显示,当下数据标注行业单次交付达标率低于50%,三次内交付达标率低于90%,远远不能满足AI企业的需求。需求方希望数据服务公司可以提高首次交付项目的准确率,并大幅减少返工情况。2. 服务效率目前数据标注行业主流的项目运营方式是以“众包”以及“转包”为主,数据服务企业很难对标注团队做到直接有效的管理,因此项目延期成为了一种常态。对于需求方来说,项目延期意味着在激烈的商业竞争中丧失先发优势,所以对于需求方来说,希望数据服务公司拥有高效的项目执行系统,提高工作效率,可以按时甚至提前完成项目。3. 数据安全数据标注行业的特殊性意味着要经常接触到很多敏感的数据,比如人脸数据、车牌数据等等,这些数据的存储、传输等对于安全性的要求极高。因此,需求方希望基础数据服务商有明确具体的安全管理流程,对数据传输、存储,以及结项后的数据销毁等环节足够重视。4. 管理能力“众包”以及“转包”模式下,管理能力较弱的公司很难在兼顾多个项目时做到精力集中、高质量地服务客户,这样的后果就是项目延期、数据质量差。因此,需求方希望数据服务企业能够建立完善的内部管理流程,优化项目流程体验,达到效率与质量的双提升。5. 服务能力数据标注业务从本质上来讲也属于一种服务业务,从项目对接到最终项目的完结,每一个环节都需要需求方与数据服务企业不断地商讨,从而做出最优解。所以,需求方希望数据服务公司能够在项目进行中做到积极配合、快速响应,并可以对项目提出一定的优化建议。以上五点是需求方对数据标注企业的核心诉求,如果这五点分别对应相应分数的话,那么总体得分越高就意味着越契合需求方的要求,就越能在激烈的竞争中占据排他性的优势。对于数据标注企业而言,单纯依据客户项目的诉求进行执行略显被动,主观能动性低、行业边界有限,各家数据标注企业的产品和服务就将趋于同质化,竞争也会加剧,不仅不利于自身发展,同时也会制约着AI基础数据服务行业的发展。所以,主动做出改变,迎合需求方的核心诉求,数据服务企业才能在激烈的市场竞争中建立差异化的优势,尤其在AI商业化落地加快的大背景下,能够在垂直场景中建立一套完整的数据整体解决方案,将在未来的市场竞争中增添重要的优势砝码。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。