创新工厂李开复:AI+”有四个阶段

编者按:这是创新工场董事长李开复在2019上海世界人工智能大会上的主论坛演讲。

 

  此前对于AI开启的行业赋能,已经被很多次阐释、验证并不断产出成果。

 

  但对于“AI+”的发展路径、逻辑和未来,在李开复之前还没有人有过如此大道至简式的分析。

 

  或许跟李开复的履历和现在密不可分。他是80年代的计算机博士,论文成果就是AI领域的研究,是懂AI的科学家。

 

  他又先后任职微软、谷歌等巨头,完整经历了IT、互联网和移动互联网的演进,是继往开来的产业变迁一线参与者。

 

  现在AI复兴以来,他创办的投资机构创新工场已投资60家AI公司,其中独角兽就有5家。以及思考着作《AI未来》,在中美都成畅销读物,后又被印成多国语言,周游列国AI。

 

  所以这一次“AI+”4时代的思考,更是真正全球视野之下的分析。

 

  参考这个逻辑,或许还能解答另一个问题:

 

  AI公司如何发展?又会往哪里去?

 

  原演讲题为《“AI+”时代的到来》,小标题为后添加:

 

 

  尊敬的陈市长、王部长,各位嘉宾,今天我要讲的题目是《“AI+”时代的到来》。“互联网+”曾经是一个非常普遍的口号,今天我们要讲的是“AI+”。

 

  “AI+”是什么意思?我们可以看到在过去的每一波浪潮当中,我刚刚从日内瓦回来,和施瓦布教授(达沃斯世界经济论坛发起人)交流,我们看到的是第四次工业革命在过去的蒸汽机、电气化、信息通信技术和互联网基础上,AI将带来第四次工业革命,AI在各种不同行业都有应用。

 

  AI演进4浪潮

 

  在我的书《AI未来》当中,我们描述了四波“AI浪潮”:

 

  AI是数据驱动,海量的数据是AI成功的要素,所以第一波浪潮一定是互联网数据的这一波。

 

  第二波浪潮是金融和很多其他的有标准化产品机会的各种领域,所谓的商业智能化,数据仓库。

 

  第三波浪潮是AI将有眼睛、耳朵还有更多传感器可以听到,感受到人类更多的信息。

 

  第四波浪潮AI将能够动,有手有脚,有轮子,在制造方面,在机器人方面,在无人驾驶方面将带来很大价值。所以它将重塑各个行业。

 

  从互联网进入商业,进入实体世界,进入全自动的智能化,我们可以看到,下面的各个领域几乎涵盖了人类社会的所有的商业领域。所以“AI+”就是把AI赋能到这四波浪潮当中的一个机会。

 

  另外我们学术界朋友谈的一个重要话题就是深度学习是不是走到底了?我们做科研的人是不是该启动新的科研课题?这个答案是肯定的。因为深度学习进入了成熟期,我们在产业界开始使用它,但是在学术界确实需要再发明更多更好的技术。

 

  这个话题的另外一面在于,虽然说我们在学术界要发明更多更好的技术,取代深度学习的技术,但是这是不可预期的,因为科学发明无法预期什么时候发生。但是非常确定的是在工业界和产业界,我们把深度学习发扬光大还有非常大的机会。

 

  一个研究告诉我们,AI在传统行业的渗透率只有4%,如果说我们对比前两次巨大的革命,我们今天的AI的普及状态就和当年的“黄页”是一样的。“黄页”大家都知道吧,马云先生的第一次创业就是“中国黄页”,那个时候互联网普及率就只有4%。

 

  这一方面意味着AI应用还非常少,另一方面意味着,未来发展的机会非常大。虽然我们看到AI在安防等领域有一些落地,但实际上我们只要问周围的企业家朋友,你的公司有没有全面使用AI,我相信96%的回答是“No”。

 

  “AI+”4阶段

 

  如果说从我们投资角度来划分AI的四个时代,我认为分为:AI技术时代、AI B2B时代,AI+传统企业时代、以及 AI 无处不在的时代。

 

  最开始AI是很难的,只掌握在非常优秀的博士手中。慢慢的它越来越好用了,最近在创新工厂我们做了一次培训,仅仅4周的时间,我们招了600个当届的学生,让他们做出了包括无人驾驶、对话机器人等超级应用。这意味着AI门坎在下降,AI技术平台越来越好用,所以AI普及带来了更多工程师,他们可以赋能更多行业,这是驱动的一个重要力量。

 

  回到四个AI的阶段,我们可以和互联网时代对比。

 

  我们记得20多年前,互联网貌似是一个黑科技,当时雅虎等都是让人不可想象的技术,这些技术大家非常快的掌握了,我们开始买Web Server等互联网内部服务器的一些软件。

 

  再下面各个公司就建立了互联网部门,有了互联网专家来帮助公司寻找方向。当时我在微软,我们就建立了一个互联网部门,专门教公司的人怎么切入互联网,但是这个部门很快解散了,因为互联网无处不在。随着技术的普及,一定会从黑科技走向一个无所不在的过程。现在我们正处于第二和第三个阶段中间。

 

  什么是黑科技时代呢?我非常有幸98年在微软中国研究院(现微软亚洲中国研究院),带了一批我的同事们做了中国最早的AI的科研人员。在2005年,又带了一批非常优秀的工程师做了很多好的AI工作。

 

  非常有幸,我在黑科技的时代接触到了很多伟大的公司,包括很多在座的朋友们,当时是一个以科研为主,以博士主导,把AI技术作为切入点,再去寻找商业应用的第一个阶段。

 

  第二个阶段是AI公司开始做2B产品,比如说保险、银行、客服、金融、教育领域能做什么产品,教育产品能卖给学校,金融产品卖给保险公司五世或者银行,包括我们投的第四范式、旷视科技、追一科技、迅策科技等等,他们都是行业的产品的领跑者。

 

  非常有幸,创新工厂投出了60家AI公司,其中有5家独角兽,未来一年还会有3-4家独角兽诞生。这是第二阶段,把AI做成产品,变成2B的应用。

 

  第三个阶段,普华永道认为2030年AI将给全世界带来大约100万亿人民币的GDP提升。在中国,我们看到大约是在200万亿人民币左右,其中40万亿左右是AI赋能达到的,远远超过其他国家。

 

  一方面这是一个巨大的机会,所以要赋能AI的各主要传统行业。但是话说回来了,我们想想今天的AI独角兽,包括我们投的5家,包括今天早上的商汤科技,包括在座的科大讯飞等等的公司,都是很伟大的AI公司,但是这些公司一年就是几十亿的收入,如果说我们在国内要创造50万亿的价值,这绝对不是再去创1万家公司可以带来的。

 

  这些AI公司会继续创造价值,但是更大的价值一定是要把AI价值赋能传统行业,如果说2030年我们是传统行业是近200万亿规模,我们只要在这个基础提升20%、30%、40%,就可以达到50万亿的规模,50万亿的价值一定是来自于AI赋能传统行业,一定不是来自于黑科技,这是一个巨大的差别。

 

  AI赋能传统行业三种模式

 

  AI怎么去赋能传统行业呢?我这里有三种模式。

 

  第一种是优化赋能,也就是说你的公司的所有的运营一点不变,但是我用AI帮助大数据赚更多钱,省更多钱。

 

  第二种模式是流程化赋能,也就是说要改改赋能模式,帮你创造更大价值。

 

  第三种模式是重构颠覆整个产业。

 

  这里我有六个例子来介绍这三个不同的方式:

 

  第一个是BPO的例子。

 

  就是在企业级应用服务当中,我们做了很多外包,简单来说,所有外包给印度的工作都可以外包给AI,现在有一个新技术叫RPA,就是把一个软件放到你的机器上,学你做的事情,过一会儿,10%、20%、30%就不需要人做了,机器就可以做了。

 

  这个对产业的节省成本是巨大的。我们可以看到的一些BPO的例子,包括在财务、法务、人力资源方面节省重复性的白领劳动,可以节省最多91.2%的成本。

 

  另外一个例子就是呼叫中心,用语音识别的技术和最新的语音识别加自然语言处理的技术,可以处理80%打来的客服电话,而且它的客户满意度是超过人可以提供的,这是我们投资的追一科技所做到的。

 

  再讲一下流程的智能化。在零售合作伙伴身上,我们用AI来预测销售,每一个产品在每家商店,每一天可以卖掉多少,它有海量的数据进来,可以做非常精准的预测,降低了它的仓储,对接到它的物流,不但带来了仓储物流节省的钱,人员培训的钱,它的店长都可以AI化,一个公司扩张找店长是非常困难的,店长现在也可以AI化了。

 

  这队对一些零售类的公司应该是上亿的价值。这个我们就可以明显看到AI赋能传统产业带来的价值是超过一个AI公司本身的。

 

  再比如说用AI了解传统数据。左边是用AI来做卫星数据,了解地面上农作物的温度和湿度,预测每年的产量和价钱。各种植物等等。右边的例子是更加精确的用太阳的高度和阴影的强度来预算那些储油罐里面有多少油。这些在没有AI的时候是不能做到的,这些只是冰山的一角,后面还有更多的机会。

 

  下面一个例子就是投资了,我们知道很多投资都是靠人和基金来做的,你去买基金可能有100种选择,1000种选择,但是是千人一面的。而且不是针对你的风险承受能力来定制的。

 

  未来AI基金会有各种收入,刚刚讲到油的收入、农产品的收入,对每个公司的股票可以做精准的预知。对于每个公司今天的士气,一个分析员是不可能做到的,但是如果说我们可以把社交媒体上,每个人属于每个公司,他今天发出来的社交媒体信息是高兴的还是不高兴的,把这个作为一个员工情绪的指数再输给AI,用AI判断这个股票是应该买还是应该卖呢?

 

  这个例子我可以讲一千个例子给你,因为一个基金经理决策只是靠几十个,几百个因素,几千个因素,而AI可以用无限的数据,无限的因素,而且针对千人千面做出更高回报的投资。

 

  美国顶级量化基金有两家,已经达到了600亿美金的规模,已经超过了人的回报。未来这个取代会比人更好,在二级市场股票基金一定会更好,因为它对海量的数据分析能力一定远远超过人。

 

  最后一个更加神奇的例子,制药。

 

  今天的制药是靠化学、生物专家去拍脑袋想一些疑难杂症用什么新方法来治疗,未来我们可以用生成化学的方法,再加上AI自然语言处理和对抗网络去寻找哪些可能的药的新分子是可能可以最快通过动物试验和临床试验的。根据我们初步的看法,对一个药的发明可以加快4倍,整个制药行业也被重构了。

 

  对于一个传统行业,AI赋能价值是巨大的,传统行业面临各种挑战,主要的挑战是AI行业怎么懂AI赋能在哪里,他们怎么去找AI专家?

 

  这一点我们也有我们了想法,创新工厂和我们的子公司创新奇智现在对8个领域提出解决方案,这些专家怎么介入呢?我们希望扮演的角色不只是VC投资公司,我们希望成为传统企业的首席AI官,我们会进来帮助每个传统企业分析在你各个部门里面,哪一个部门用AI可以产生最大价值。

 

  我们会把技术卖给你,或者是把技术送给你,连源代码,甚至派人进来,就和传统的咨询顾问一样。咨询顾问按照小时收费,我们不用收费,我们直接进去投资你这个公司,所以我们投黑科技公司,投2B公司,下面我们准备投传统公司,用AI力量来为他们赋能。

 

  总结

 

  所以今天我的演讲是分三个重点。

 

  第一个是AI会影响所有行业,尤其是传统行。

 

  第二,只有那些拥抱AI的传统行业才能得到最大的增长。

 

  最后,中国的传统行业某些领域还不是领先世界的,但是反而有可以弯道超车的机会,因为他同时做到IT化、数据化和AI化,这一定会帮我们带来2030年的50万亿的价值。

推荐文章

大数据领域经历了2013年开始的疯狂增长,2016年的断崖式下降,以及2018年以来的迭代复苏,单一的数据技术逐步与人工智能技术结合,应用场景从营销获客、金融风控等为主,转为与城市管理、工业制造等领域越来越深度的结合。大数据产业已进入2.0时代。新时代下,数据与智能融合,新赛道的投资机会如何判断?中国计算机学会(CCF)大数据专家委员会,每年年底都会发布下一年的大数据发展十大趋势预测。回顾从2013年到2019年的第一大预测,可以发现有意思的发展轨迹:数据的资源化(2013)、大数据从“概念”走向“价值”(2014)、大数据分析成为数据价值化的热点(2015)、可视化推动大数据平民化(2016)、机器学习继续成智能分析核心技术(2017)、机器学习继续成大数据智能分析的核心技术(2018)、数据科学与人工智能的结合越来越紧密(2019)。从大数据的概念兴起到寻找和挖掘大数据的价值,再到大数据的平民化以及大数据与人工智能的紧密结合,这是一个螺旋上升的过程。在这个过程中,整个大数据产业越来越认同:数据本身没有价值,经过清洗之后才能形成信息,信息只有经过整理才会形成知识,知识只有应用了才会形成智慧,智慧经过收集又变成数据,这是一个完整的循环。数据经过迭代和循环之后,基于场景化的应用才能创造价值,这已经成为产业共识。进入2018年,我们正处于大数据产业第一轮上升周期的最后阶段——智能应用阶段。现在,各种各样的IT公司、AI公司、大数据公司甚至是SI系统集成商等都在进入所谓“数据智能”领域,造成竞争非常激烈,使得很多从业者在审视方向和战略路径的时候产生了焦虑。其他赛道的争相融合,也使得数据智能赛道中的选手排名有很大的不确定性,再加上这些选手在一级市场高估值的现象,使得投资人在做判断的时候比较纠结。在2018年12月举办的钛资本“新一代企业级科技投资人投研社”在线研讨会第八期上,达晨财智业务合伙人窦勇分享了对数据智能产业的思考。窦勇在达晨财智负责大数据业务,同时也是中国首席数据官联盟专家组成员,其投资案例包括数联铭品、数据堂、昆仑数据、美林数据、蝎子网络、中奥科技、索为高科、锐思环保等。走进数据2.0时代大数据,通俗的讲就是一台机器干不完的事情,利用多台机器来完成。大数据能够快速发展的根本原因无非两个,一个是计算性能的提升,第二个存储成本的降低。对标国外来看,整个20世纪90年代之前,因为信息化尚未完成,数据量比较少。进入21世纪,移动互联网的兴起使得数据量飙升。2005年,雅虎解决网页搜索问题的时候,提出来两个概念——高性能计算、分布式存储,对行业有着很深远的意义。资本市场更关注的是2009年Splank的上市,来自资本市场的刺激让整个市场为之动容。而2014年Plantir的估值达到200亿美金,更是让国内的整个投资界为之疯狂。国内来看,从2013年到2017年12月9号,属于数据1.0时代,是进行认知、培训、泡沫、创新的过程。为什么以2017年12月9号为分界点呢?因为在这一天梅宏院士向中央递交了一个报告,从此整个行业进入了数据2.0时代,也就是数据场景化应用、深度融合的时代。云计算、大数据、人工智能这三者之间你中有我、我中有你、互利共存,一起促进了整个数据智能产业的发展。云计算的出现带动了大数据的热潮,后来人工智能变得更热了,是不是大数据就变得不重要了?其实大数据已经融入到了整个人工智能产业中。回顾数据1.0时代的投资逻辑数据1.0时代是一个体现数据差异化的时代,这个时代从消费领域的大数据开始,经历了机器大数据以及后来的工业大数据。机器大数据萌芽阶段是从2013年到2015年,从2015年进入成长阶段,新三板的介入助推了这个进程。在2016年之前,工业大数据没有得到太多的关注,整个产业现在也还处于发展的初期,这是因为工业领域的信息化尚未完成,有很多的不确定性因素,也存在大量机会。数据1.0时代,从产业角度来看,数据格式从结构化、半结构化、异构化等多样化的融合使得数据源变得更加丰富;而处理数据的手段,无论是基于Hadoop还是Spark的计算方式,都使得整个产业不断地迭代和演进。数据1.0时代的创业者无非有三类:第一类是原来的传统IT和系统集成商,这一部分群体的出现主要是因为在2015年整个数据行业处于高速发展中,在一级市场给出高估值的情况下,大部分IT系统集成厂商摇身一变成了所谓的数据厂商,他们胜在更贴近用户,但可能对于行业的认知不足,不太关注研发投入;第二类是拥有稀缺数据资源的厂商,他们凭着独有的数据资源能够带来独有的视角和商业价值;第三类是具备技术的创业团队,他们大部分来自于传统的企业IT公司,包括微软、IBM、Oracle等大型厂商,对于技术的应用比较强。在过去五年当中,这三者各有一席之地,但是最终在进入数据2.0时代的时候逐渐融合,都在往场景落地上走,也就是所谓的数据融合。数据1.0时代从资本的角度来看,2014年Palantir获得200亿美金的估值,加快了国内整个行业泡沫的形成。新三板2015年的推出导致整个行业的虚高。2016年6月1号,《网络安全法》的公布又矫枉过正。特别是对个人隐私数据的极端关注,导致大量行业从业者退出。而因为泡沫的存在,造成了大量黑产数据的形成,产业里面形成了大量的灰色地带。整个行业陷入极其消沉期是在2017年,由于对整个行业的未来方向都看不清楚,很多人到处尝试,数据行业投入的壁垒也在逐渐加大。2017年12月9日的“实施国家大数据战略”,为整个数据行业带来了一个新的方向。中国政府是数据最大的拥有者,也是数据最大的需求者,但本身没有技术能力使用数据。因此,如果没有政策的指引,地×××府也不敢投入。所以,2017年12月9日之后,整个行业迎来了快速发展。对于数据应用来说,什么样的行业领域才能体现数据价值?一是这个行业具备一定的信息化程度;二是具备购买数据服务的能力;三是具有数据安全或安全数据,数据安全是指数据资产本身从流通到应用过程中的安全,安全数据是指数据来源的合法性,对这个问题必须慎之又慎。对大数据企业进行估值也比较挑战,传统的估值模型往往在现实中不成立。数据企业具有一个显著的特点:除了轻资产外,其它的什么都没有。对于这类型资产怎么进行估值?投资机构在最开始做数据企业估值的时候肯定是“两眼一抹黑”,不过可以基于三个方面的目的进行判断:第一,投资机构确实想进入这个市场,所以在有标的物的估值方面可能会采取折中的办法;第二,投资以退出为目的,估值取决于需要多长时间能够收回本金;第三,数据企业的产品应用场景在哪里,用户的反馈是什么。还有一些比较实用的小技巧:第一,数据企业到底能解决什么样的问题,是否具备可复制性,持续能力在哪里;第二,团队的构成是否互补,数据企业往往都是科学家型,在面对市场时有哪些短板,如果后期补齐了短板,成长的能力又在哪里;第三,创业早期可能对财务指标不会太在意,但是对于资金的使用去向要特别关注。数据2.0时代:场景逻辑,巨头形成数据2.0时代到底是什么样的呢?从产业内部来看:第一,普适性的教育已经初步完成,分工明确、需求也十分确定,给整个数据产业带来了一个快速发展的强周期,具备了天时、地利和人和;第二,随着金融资本市场进一步的回落,对于数据企业的认知更加回归本质,资本市场给整个产业带来的泡沫逐渐消亡,原来单纯靠PPT演讲就能融资的情况已经基本不存在了。从产业外部来看:第一,资本市场回归理性,泡沫空间变小。都知道2018年难熬,大家的口号都是“活下去”;第二,外部政策环境持续利好,无论是科创板的即将开板,还是国家把数据行业定位为新经济的重要支柱,都给数据产业的良性发展提供了一个良好的外部环境。天时、地利、人和都具备了,可以预测,大数据企业在未来的一段时间将形成以下三个良性发展:第一:场景落地的效应更加明确。到底是针对什么样的场景解决什么样的问题,这种场景是否具备可复制性,持续效应在哪里,如何随着时间的推移得到进一步的应用;第二,数据龙头企业形成。资本寒冬后留下来的是良品,大数据企业会趋于一种寡头效应。凭借着资本市场以及行业里大量的沉淀,将形成对整个产业的新认知。现在二级市场上虽然很多自称大数据企业,其实真正的大数据企业可能寥寥无几,可以期待之后真正的数据巨头形成;第三个是技术更新加快。现在无论是从硬件还是软件,整个产业层面对于数据行业的支撑在不断的加快演进与迭变。无论是从计算性能还是存储效率来看,计算效率的极大提升将驱动产业进一步良性的发展。回归到本质来看,数据2.0时代的“场景落地”到底指的是什么样的场景?这个场景一定是在信息化基本完成的行业里,并且行业具有较强的支付能力。创业公司也不再是项目型,而是以产品的形式带动整个产业的发展。工业互联网:数据2.0的典型场景在场景落地方面,工业互联网是一个典型的细分赛道。2017年12月9号之后,最让整个产业界兴奋的事件,就是工业富联上市。工业互联网赛道在当前的寒冬期仍相当红火,主要推手有两个:一个是工信部信通院在推广工业互联网板块,另一个是国家层面的“中国制造2025”。这两个推手促成了工业互联网赛道的趋之若鹜。但目前我国的工业尚处于3.0阶段,难以跟以高科技著称的美国工业互联网、以机械著称的德国工业互联网对标,所以国家提出了“中国制造2025”。虽然这只是纲领性的文件,但是对整个产业界、投资界以及工业互联网创业圈的振动却不小。从“中国制造2025”的宏伟目标看,其中的产业机会达上万亿。但整个赛道从投资者的角度来看,创业者并不多。因为既懂IT又懂工业的人少之又少,整个工业互联网赛道看似有巨大的商业机会,但从基本面来看还处于一个比较落后的阶段。投资人应该怎么看工业互联网?工业互联网可以分两部分:第一,透明工厂,就是在工厂内部围绕产品打通原料、生产流、信息流、资金流,实现设备智能化、流程信息化、过程网络化;第二,以前当产品离开工厂后就很难再与工厂发生联系,而从工业互联角度考虑就要以用户为中心,实现需求个性化、体验场景化、用户生态化。围绕这两部分,工业互联网的体系,从产品全周期管理开始到最终用户互联互通,形成了一个生态。生态当中流通的是数据,以数据的方式驱动整个产业的布局。按三个层级划分,工业互联网领域可以布局的赛道具体有以下这些:第一,边缘层。围绕工业互联网的数据汇聚基础,值得布局的赛道有工业传感器、5G、芯片产业。实际上,传感器领域还是被国外厂商垄断,5G核心芯片也是类似情况。但是,随着带宽的提高,采集数据的成本降低了。物联网领域,形成了M2P(Machine-to-Person机器与人连接)和M2M(Machine-to-Machine机器与机器连接),数据的流通得到了进一步的加强。当然芯片不是靠钱能堆出来,但是基于工业互联网的单片机相对比较容易,投入资金也能促成一些基于行业场景化、定制化的芯片,所以这个领域还是有一定的机会。第二,平台层。可以关注几个方向:首先是行业内的应用平台,这是因为没有行业应用具体特征的数据平台会比较空泛,而解决工业领域各种细分需求的平台需要花费更多时间打造;其次,从技术逻辑角度来看,基于工业产品的时空数据库并没有较好的解决方案,相应可以布局专门针对工业领域数据特点的解决方案。第三,应用层。因为这个行业相对比较早期,哪怕相对比较大型的企业如树根互联、网智天元、徐工信息等,可能在某一个细分领域凭借原来的行业经验积累了丰富的应用,或者凭借母公司带来相对垄断的资源,但也还都是项目制的方式运营,完全以标准化产品提供服务的还比较少。应用层的创业和投资机会,可以从两个方面考察:第一,信息化是否提前完成;第二,有资金和技改经费。按照这两个标准,能源、电力、高端装备制造业等都是比较好的选择。整体来说,在工业互联网板块三个层级里,哪一个层级会先有选手跑出来呢?从用户的角度来看,可能是平台层。虽然没有边缘层这些企业解决数据采集、数据治理、数据清洗的问题,平台层无从谈起。但是边缘层往往吃力不讨好。大的企业客户往往急于看到效果,对于平台层的需求往往超出对于边缘层的需求。应用层是不是没有机会呢?也不是。但是在工业互联网领域,用户在意的是究竟能不能解决问题。从行业来看,一定是在能源、电力、高端装备制造业等板块,会较早的跑出一些选手。大数据领域经历了2013年开始的疯狂增长,2016年的断崖式下降,以及2018年以来的迭代复苏,单一的数据技术逐步与人工智能技术结合,应用场景从营销获客、金融风控等为主,转为与城市管理、工业制造等领域越来越深度的结合。大数据产业正进入到2.0时代。新时代下大数据与人工智能的融合,已然成为各行各业技术驱动、产业升级的重要支撑。具备数据智能的能力、以场景应用为中心的项目,将成为大数据领域的投资主流。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。