企业数据治理的成功要素之一:数据战略管理

0817102358.png

前言:作为一名数据服务工作者---资深“乙方”,见过、听过或亲身经历过很多的数据治理相关的项目,如:数据交换共享项目、数据治理项目、主数据项目、元数据项目……,这些项目中,有非常成功的——用的很好,也有差强人意的——勉强在用,还有没上线就下线的——基本没有使用。如果我们Review下这些项目,也许我们不难发现影响数据治理项目成功或失败的因素有很多,这些因素有管理方面的、业务方面的、技术方面的、企业文化方面的等等

在笔者看来,数据治理项目的成功要素可以总结为以下几点,接下来的一段时间我会跟大家一起分享数据治理项目的各个成功要素,欢迎关注!

  • 企业数据战略管理

  • 数据治理架构设计

  • 数据治理的时机与切入点

  • 组织与保障体系建设

  • 技术和工具——工欲善其事必先利其器

  • 建立长效运营机制


本期分享主题【数据治理的成功要素1:企业数据战略管理】,本文大纲:

一、数据战略是什么?

二、数据战略不是什么?

三、数据战略的四个要素

四、数据战略的三个层次

五、数据战略制定的方法和工具

六、总结


一、数据战略是什么
战略原本是军事领域的专用名词,是指指导全局战争的规划和方略。战略决定了组织的活动方向和内容,解决“干什么”的问题,是根本性的决策。在DAMA-DMBOK中对数据战略是这样定义的:
1.png
战略是选择和决策的集合,共同绘制出一个高层次的行动方案,以实现高层次目标。通常,数据战略是一个数据管理计划的战略,是保存和提高数据质量、完整性、安全性和存取的计划。然而,数据战略计划可能还包括利用信息达到竞争优势和支持企业目标的业务计划。数据战略必须来自与对业务战略中的所固有的数据需求的理解,这些数据需求驱动了组织的数据战略。数据战略的组成部分包括:

  • 为数据管理制定激动人心的愿景

  • 数据管理商业案例摘要,附带精选的例子

  • 指导原则、价值观和管理远景。

  • 数据管理的使用和长远目标

  • 数据管理成功的管理措施

  • 短期的(1~2年,具体、可度量、可操作、可实现、有时限的)数据管理方案目标。

  • 说明数据管理的角色和组织级其职责和决策权概述。

  • 数据管理方案的组成部分

  • 数据管理实施路线图

  • 数据管理的项目章程

  • 数据管理的范围说明

简单来说,企业数据战略包括:数据管理的愿景(长期目标)、中期目标、短期目标、实施策略、实施方案、实施路线图等。
二、数据战略不是什么
2.png
数据战略是企业愿景吗?
可能是也可能不是,或者说不完全是。我们看下各大公司的企业愿景是什么。
IBM:无论是一小步,还是一大步,都要带动人类进步。
苹果公司:让每人都拥有一台计算机。
阿里巴巴:分享数据的第一平台,幸福指数最高的企业,活“102”年。
腾讯:科技向善。
百度:成为最懂用户,并能帮助人们成长的全球顶级高科技公司。
用友:用技术和创想推动社会和商业进步。
企业愿景是企业利益相关者的本质诉求的整合,是企业战略的最高指引,可以理解为企业的长期战略。在当今席卷全球的颠覆性技术浪潮中,市场变化莫测,相对遥远的长期数据战略,笔者更倾向于哪些有着明确目标、明确范围、明确实施路径,具备可执行、可实现性的短期数据战略。世界变化太快,谁都无法预测10年后的世界是什么样子的,企业数据战略的指定一定要具备应对市场和技术变化的能力。这里申明,笔者并不是反对企业制定长期的数据战略规划,而是要在长期的数据战略之上细化出短期的可执行、可实现、能见效的战略目标,“小步快跑、快速迭代”。数据战略是企业战略的一部分,而企业战略是实现企业愿景的规划和部署。
数据战略是数据架构吗?
显然也不是,至少说不完全是。数据架构是用于定义数据需求,指导对数据资产的整合和控制,是数据投资和业务战略相匹配的一套整体的构件规范。数据架构包括正确的数据定义、有效的数据结构、完整的数据规则、健全的数据文档。数据架构整合了数据、流程、应用、组织、规范和技术,其典型输入包括:企业数据模型、企业价值链分析、数据库架构、商务智能或数据仓库架构、数据集成和整合架构、数据质量管理架构、以及文档和内容管理架构。
数据战略和数据架构不是一回事。定义数据架构的决定,是数据战略的一部分,实施数据架构的决策是战略决策。数据战略会影响到数据架构的设计,反过来,数据架构支持数据战略的实现,并指导其决策。笔者认为:数据架构侧重于技术,是企业数据管理的战术范畴,数据架构对上承接数据战略目标,对下联通数据战略实施计划。数据战略的落地除了需要数据架构的技术支撑,也需要企业数据文化的建设。
既然数据战略既不是看似缥缈的愿景,也是技术相关的架构,结合DAMA-DMBOK给出的数据战略定义,我们尝试总结下企业的数据战略究竟是什么。笔者看来:数据战略就是企业为实现某些业务目标而做出的数据规划和部署,主要包括:数据战略目标、数据战略范围和内容、数据战略实施策略、以及数据战略的实施路径和计划,这也就是我们所说的“战略四要素”。
三、数据战略的四个要素
3.png
1、数据战略目标——愿景和目标
愿景是制定企业战略的起点,是企业的长期战略,而目标是企业短期内要达成的明确目标,是企业的短期战略。企业数据战略目标的规划设计不仅要有“诗和远方”的田野,也要考虑生活“眼前的苟且”。正如我们前边提到的阿里巴巴公司,大多数人都知道阿里巴巴是一个电子商务公司,可马云说阿里巴巴是一家大数据公司,其远期的数据战略目标是“分享数据的第一平台、幸福指数最高的企业”。阿里系的产品,如:天猫、淘宝、支付宝……,每时每刻都在生产、汇集、加工着大量的数据,这些数据是具备变现能力的。通过数据的变现和分享,希望阿里成为幸福指数最高的企业指日可待。如果我们把“分享数据的第一平台、幸福指数最高的企业”理解为阿里的远期数据战略的话, 当年阿里如火如荼的研发AliSQL替换Oracle的战略就是那个时期阿里的中期数据战略,这个战略从部署到实施花了10年之久;而当前被炒上天的“数据中台”就是目前阿里的短期数据战略,并且这个战略目前已经实现了。这里只是举例便于理解,也许阿里的数据战略并非如此关于数据中台的话题,网上有太多的概念了,后边有机会的话可以分享下我对数据中台的理解,这里就略过了。
2、数据战略范围和内容——战略定位
战略定位是回答了“做什么”、“不做什么”的根本问题,企业数据战略定位,就是定义企业的数据管理/数据治理的范围和内容。按照DAMA的给出的数据战略范围主要包括:数据架构、元数据管理、数据标准管理、数据质量管理、主数据和参照数据、数据安全管理等。以上每个部分内容都可各成体系,那对企业来说,数据治理范围和内容该如何选择,却是摆在企业面前不得不回答的问题。这里,笔者建议企业的数据治理定位应充分考虑以下几点因素:企业的痛点需求是什么,希望实现的目标是什么,实施数据治理就能解这些问题吗,数据治理的投资计划(人力和资金),期望的投资回报率。把以上问题问题都想清楚了,你的数据战略定位也就清晰了——或选择全域治理、或选择个别亟待治理的主题。

 

3、数据战略实施策略——致胜逻辑

致胜逻辑是解决了“怎么做”,“由谁做”,“做的条件”、“成功原因”等问题,是战略的精髓。我们都知道数据治理项目涉及的业务范围广、系统范围大、参与人员多,并且数据治理是一个需要不断迭代、持续优化的过程,不能一蹴而就。那么数据治理项目该从何处入手,谁来主导、谁来配合、怎样才能保证项目的成功实施并能够取得效果?这个问题不好回答。根据笔者这些年见到、听到或亲身经历的数据项目,成功或失败,很大一部分因素是由这个“致胜逻辑”决定的。成功的项目不表,我们看大多数失败的项目都可能会有以下几个特点:目标不明确、范围不清晰、主导人员分量不足、参与人员不够积极、过分迷信技术和工具、过渡依赖外部资源……。做正确的事远比正确的做事更加重要,事前想清楚数据战略的致胜逻辑,要比事后总结教训的成本低很多。数据治理项目的成功一定是将以上因素有机整合,忽视某一因素都可能会影响的数据治理的成效。
4、数据战略的实施路径——行动计划
行动计划是落实战略目标或指导方针而采取的具有“协调性”的计划安排。行动计划解决了“谁”、“在什么时间”、“做什么事”、“达成什么目标”的具体活动计划。行动计划要具备可执行性、能够量化、能够度量,遵循PDCA的闭环管理,定期进行复盘和检讨。前文我们提到:数据治理是一个需要不断迭代、持续优化的过程,不可一蹴而就经验告诉我们:数据治理绝对不是引入先进的技术、牛X的软件就能够解决的。项目建设过程需要企业高层的高度重视并给予足够的资源支持,需要有经验丰富的顾问团队,需要技术部门和业务部门的通力协作,这样提高项目建设的成功率。然而,项目建设阶段的成功并不代表数据治理的成功,建设阶段的成功企业数据治理项目的终点,却是企业数据治理的起点。路漫漫兮其修远,企业数据治理需要的是持续运营,将数据治理形成规则融入企业文化,是企业数据治理的根本之“道”。
四、数据战略目标的三个层次
数据战略的三个境界——此节内容并没有官方定义,单凭个人理解,如有偏颇但求指正。笔者认为企业数据战略大致可以分为:满足基本的管理目标和业务目标、创新与创业、定义在数字化竞争生态中的角色和地位,三个层次。这三个层次并不是不同企业不同的数据管理目标,而是企业数据战略的在不同阶段、不同成熟度条件下的三个具体形态。
4.png

1、第一个层次——短期目标
满足基本的管理决策和业务协同。通过解决企业的数据管理中的各类问题,以满足决策分析和业务协同的需要,对于该层次的战略目标,笔者认为是企业最基础的、最迫切需要的、最能击中企业痛点的。随着多年的信息化建设,企业上了多套业务系统,而这些业务系统是由业务部门驱动建设的,缺乏信息化的顶层规划,各系统各自为政、各成体系、信息孤岛……,系统之间的数据不标准、不一致,导致的应用集成困难、数据分析不准确。可以说目前国内绝大部分企业都是处于这个状态,而信息技术的发展速度又太快,已逐步形成了技术倒逼企业数字化的转型的趋势,而高质量的数据资产,无疑是企业数字化转型的基石。
2、第二个层次——中期目标
创新与创业。基于数据实现企业管理的升级和业务的创新,通过数据的利用拓展新业务、构建新业态、探索新模式是笔者认为的企业数据战略的第二个层次,也是企业数据战略的中期目标。数据战略不再是企业战略的支撑,而是引导,或者说是相互作用,这个阶段“IT即业务”!对于传统制造企业利用数据的治理和融合,可以加速管理的创新、产品的创新、销售模式的创新,例如:利用数据治理加强集团管控、基于客户偏好的个性化定制、利用数据的供应链协同和优化、基于市场预测的创新产品设计与快速上市等等。对于服务行业利用大数据的探索服务的新模式,数据可以拓宽服务的视野,实现模式领域的横向拓展、服务精度的纵向延伸,例如:根据消费者需求推出定制化的主题房,酒店新零售的服务模式,都是酒店服务业在业务创新方面上的尝试,大大提升了客户的粘性,提高了酒店的盈利点。这样的案例,在金融服务、餐饮服务、医疗服务、教育服务等服务行业,每天都在上演……。未来的服务业的竞争将更加白热化,而数据资产的利用价值将愈发明显。
3、第三个层次——远景目标
定义在数字化竞争生态中的角色和地位,企业数据战略的最高奥义。用友董事长王文京预言:“未来所有企业都将是数字化企业”,针对这个观点本人深以为然。科技的变革将改变企业的业务形态和竞争模式,未来的数字化竞争中,数字化将是不可忽视的核心因素,企业数据战略的部署和成功实施,将决定您的企业在未来的竞争和数字化生态中,是领导地位、挑战者、特定领域者或是淘汰出局。“什么样的愿景,决定了什么样的未来”,企业数据战略愿景的规划一定要有未来的“诗和远方”。将数据战略愿景融入企业行动方针和核心价值观中,勾勒出企业未来的“图景”。例如,马云描述阿里巴巴的愿景:分享数据的第一平台,幸福指数最高的企业,活“102”年。
五、数据战略制定方法与工具
数据战略的制定以企业战略为基础、以业务价值链为模型、以管理应用为目标,以可执行的活动为步骤,通过系统化的思维,挖掘信息以及信息间的规律,经过科学的规划和设计,形成企业数据化运营的一幅蓝图。对于数据战略规划的方法,目前业界还未形成一套成熟的方法论体系,但是,IT咨询和IT战略规划的方法论已经比较成熟,可用作企业数据战略规划的参考,我们先看下各大知名咨询公司的IT战略规划方法:
埃森哲 IT战略规划方法论
5.png
IBM IT战略规划方法论
6.png

德勤  IT战略规划方法论
7.png

无论哪家方法论,对于IT战略规划本质上都是一样的,基本都包含了三个步骤:

1、调研分析,关键活动有:战略理解、需求分析、现状评估、行业最佳实践对比……

2、远景规划,关键活动有:业务规划、组织架构、技术架构、数据架构、应用架构、IT支撑……

3、实施策略,关键活动有:项目实施、进度和质量管控、效益分析、基础支撑……

以上IT咨询规划方法,同样适用于企业数据战略的规划设计,但在数据战略规划设计时需要重要考虑以下几个核心问题:

推荐文章

目 录摘 要 ........................................................7一、 简介 ....................................................... 9(一) 《国家人工智能研究和发展战略计划》的目的 ............. 9(二) 预期结果 ............................................ 11(三) 利用人工智能推进国家优先事项的愿景 .................. 121、 促进经济发展 ....................................... 122、 改善教育机会和生活质量 ............................. 133、 增强国家和国土安全 ................................. 14(四) 人工智能的现状 ...................................... 14二、 研发战略 .................................................. 18(一) 战略一:对人工智能研究进行长期投资 .................. 211、 提升基于数据发现知识的能力 ......................... 212、 增强人工智能系统的感知能力 ......................... 223、 了解人工智能的理论能力和局限性 ..................... 224、 研究通用人工智能 ................................... 235、 开发可扩展的人工智能系统 ........................... 246、 促进类人的人工智能研究 ............................. 247、 开发更强大和更可靠的机器人 ......................... 258、 推动人工智能的硬件升级 ............................. 269、 为改进的硬件创建人工智能 ........................... 26(二) 战略二:开发有效的人类与人工智能协作方法 ............ 281、 寻找人类感知人工智能的新算法 ....................... 292、 开发增强人类能力的人工智能技术 ..................... 303、 开发可视化和人机界面技术 ........................... 304、 开发更高效的语言处理系统 ........................... 31(三) 战略三:了解并解决人工智能的伦理、法律和社会影响 .... 331、 改进公平性、透明度和设计责任机制 ................... 332、 建立符合伦理的人工智能 ............................. 345 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 3、 设计符合伦理的人工智能架构 ......................... 34(四) 战略四:确保人工智能系统的安全可靠 .................. 361、 提高可解释性和透明度 ............................... 362、 提高信任度 ......................................... 363、 增强可验证与可确认性 ............................... 374、 保护免受攻击 ....................................... 385、 实现长期的人工智能安全和优化 ....................... 38(五) 战略五:开发用于人工智能培训及测试的公共数据集和环境 391、 开发满足多样化人工智能兴趣与应用的丰富数据集 ....... 392、 开放满足商业和公共利益的训练测试资源 ............... 403、 开发开源软件库和工具包 ............................. 40(六) 战略六:制定标准和基准以测量和评估人工智能技术 ...... 421、 开发广泛应用的人工智能标准 ......................... 422、 制定人工智能技术的测试基准 ......................... 423、 增加可用的人工智能测试平台 ......................... 434、 促进人工智能社群参与标准和基准的制定 ............... 44(七) 战略七:更好地了解国家人工智能人力需求 .............. 46三、 建议 ...................................................... 471、 建议一 ............................................. 472、 建议二 ............................................. 47附录:首字母缩写词 ............................................. 48译者注 ......................................................... 506 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 摘 要人工智能(AI)是一种具有巨大社会和经济效益的革新性技术。人工智能有可能彻底改变我们的生活、工作、学习、发现和沟通的方式。人工智能研究可以推进美国的国家优先任务,包括增加经济繁荣、改善教育机会和生活质量,以及加强国家和国土安全。由于这些潜在的益处,美国政府已经对人工智能研究投资多年。然而,与联邦政府感兴趣的任何重要技术一样,指导人工智能领域联邦资助研发的总体方向时不仅具有巨大的机会,还必须考虑到一些注意事项。 2016 年 5 月 3 日,政府宣布成立一个新的国家科学技术委员会(NSTC)机器学习和人工智能小组委员会,以帮助协调联邦在人工智能领域的活动。1 该小组委员会于 2016 年 6 月 15 日,请求网络和信息技术研究和发展计划(NITRD)小组委员会编写《国家人工智能研究和发展战略计划》(以下简称“AI 研发战略计划”或《战略》)。之后成立了一个 NITRD 人工智能工作组,以确定人工智能研发为联邦的战略重大计划,特别关注产业不可能解决的领域。 这项《战略》为联邦资助的人工智能研究制定了一系列目标,既包括政府内部的研究,也包括联邦资助的政府外部研究,例如在学术界。这项研究的最终目标是产生新的人工智能知识和技术,为社会提供一系列积极效益,同时尽量减少负面影响。为实现这一目标,《战略》确定了联邦资助人工智能研究的以下重大计划: 战略一:对人工智能研究进行长期投资。优先投资下一代人工智能,将促进新发现和洞察力,同时使美国在人工智能领域保持世界领先地位。 战略二:开发有效的人类与人工智能协作方法。并非取代人类,大多数人工智能系统将与人类合作以实现最佳性能。需要研究来创建人类和人工智能系统之间的有效交互。 战略三:了解并解决人工智能的伦理、法律和社会影响。我们期望人工智能技术根据我们持有人类同胞的正式和非正式规范表现。需要研究以了解人工智能的伦理、法律和社会影响,并开发设计符合伦理、法律和社会目标的人工智能系统的方法。 战略四:确保人工智能系统的安全可靠。在人工智能系统广泛使用之前,7 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 需要保证系统将以受控、充分定义和充分理解的方式安全地操作。需要进一步加强研究,以解决创建可靠、可信任和可信赖人工智能系统的挑战。 战略五:开发用于人工智能培训及测试的公共数据集和环境。训练数据集和资源的深度、质量和准确性显著影响人工智能性能。研究人员需要开发高质量的数据集和环境,并允许负责访问高质量数据集,以及测试和培训资源。 战略六:制定标准和基准以测量和评估人工智能技术。人工智能进步极其重要的是指导和评估人工智能进展的标准、测试基准、测试台和社区参与。需要进行额外的研究来开发广泛的评价技术。 战略七:更好地了解国家人工智能人力需求。人工智能的进步将需要一个强大的人工智能研究人员社区。需要更好地了解人工智能当前和未来研发人员需求,以帮助确保有足够的人工智能专家能够应对本计划中概述的战略研发领域。 《战略》最后提出了两方面建议: 建议一:开发一个人工智能研发实施框架,以抓住科技机遇,并支持人工智能研发投资的有效协调,与本计划的第一至六项战略保持一致。 建议二:研究创建和维持一个健全的人工智能研发队伍的国家愿景,与本计划的战略第七项保持一致。 8 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 一、简介(一)《国家人工智能研究和发展战略计划》的目的 1956 年,来自美国的计算机科学研究人员在新罕布什尔州的达特茅斯学院会面,讨论一个新兴的计算分支,即人工智能或 AI 的开创性思想。他们想象了一个世界,“机器使用语言,构成抽象和概念,解决现在人类的问题,并改善自己”。2 这次历史性会议为 AI 的政府和行业研究设置了几十年阶段,包括感知、自动推理/规划、认知系统、机器学习、自然语言处理、机器人和相关领域的进展。今天,这些研究进展已经产生影响我们日常生活的新兴经济部门,从制图技术到语音辅助智能手机,到邮件传递的手写识别,到金融交易,到智能物流,到垃圾邮件过滤,语言翻译,甚至更多。AI 进展也为精准医学、环境可持续性、教育和公共福利等领域的社会福利带来巨大的益处。3过去 25 年来,AI 方法的显著增加在很大程度上得益于统计和概率方法的采用,大量数据的可用性以及计算机处理能力的提高。在过去十年中,机器学习的 AI 子领域,使计算机能够从经验或例子中学习,已经表现出越来越准确的结果,引起了人们对 AI 近期前景更多的兴趣。虽然最近注意到例如深度学习等统计方法的重要性,4 但在其他各种领域 AI 也已经取得了影响深远的进展,例如:感知、自然语言处理、形式逻辑、知识展示、机器人技术、控制理论、认知系统架构、搜索和优化技术以及其他更多方面。 (注:深度学习是指使用多层神经网络的一系列方法的汇总,这些方法支持快速完成一度被认为无法自动化完成的任务。)AI 的最近成就对这些技术的最终方向和影响已经产生了重要问题:当前 AI技术的重要科学和技术瓶颈是什么?新的 AI 进展将提供什么积极,需要的经济和社会影响?如何继续安全和有益地使用 AI 技术?如何设计 AI 系统以符合伦理、法律和社会原则?这些进步对 AI 研发人员的影响是什么? AI 研发的情况变得越来越复杂。虽然政府过去和现在的投资造就了 AI 的突破性方法,但其他部门也已成为 AI 的重要贡献者,包括广泛的行业和非营利组织。这种投资环境提出了关于联邦投资在 AI 技术发展中适当作用的重要问题。联邦对 AI 投资的正确优先事项是什么,特别是在行业不可能投资的领域和时间框架方面?是否有机会进行产业和国际研发合作,推动美国的优先事项? 9 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 2015 年,美国政府对 AI 相关技术的未分类研发投资约为 11 亿美元。虽然这些投资已经产生了重要的新科学和技术,但是仍有机会在联邦政府之间进一步协调,使这些投资能够充分发挥潜力。5认识到 AI 的革新性影响,2016 年 5 月,白宫科学和技术政策办公室(OSTP)宣布了一个新的跨部门工作组,以探讨 AI 的利益和风险。6 OSTP 还宣布了一系列四个研讨会, 举办于 2016 年 5 月至 7 月的一段时间,旨在促进 AI的公众对话,并确定其所带来的挑战和机遇。研讨会的结果是伴随公共报告《为人工智能的未来准备》的一部分,与该计划一起发布。 在 2016 年 6 月,新的 NSTC 机器学习和人工智能小组委员会 - 它被特许在联邦政府、私营部门和国际上与 AI 的进展保持同步,并帮助协调联邦在 AI 的活动,任命 NITRD 国家协调办公室(NCO)创建《国家人工智能研究和发展战略计划》。小组委员会指示本计划应传达一系列明确的研发优先重点,以解决战略研究目标,将联邦投资重点放在行业不太可能投资的领域,并解决扩大和维持 AI 研发人才渠道的需求。 本 AI 研发战略计划的输入来自广泛的来源,包括联邦机构、AI 相关会议的公开讨论、投资于 IT 相关研发的所有联邦机构的 OMB 数据呼叫、投资 IT 相关研发,OSTP 信息请求 RFI),该信息请求向公众征询了有关美国如何为未来的 AI7做出最佳准备的意见,以及 AI 公开出版物的信息。 该计划对 AI 8的未来做出多个假想。首先,假设 AI 技术将继续发展至复杂巧妙并无所不在,而这多亏了政府和行业对 AI 研发的投资。第二,本计划假设AI 对社会的影响将继续增加,其中包括就业、教育、公共安全和国家安全,以及对美国经济增长的影响。第三,假设行业对 AI 的投资将继续增加,因为最近的商业成就已增加了研发投资的预期回报。同时,本计划假设一些重要的研究领域不太可能获得来自行业的足够投资,因为它们受制于典型的公共物品投资不足问题。最后,本计划假设对 AI 专业的需求将继续在行业、学术界和政府内部增长,从而对公共和私人造成劳动力压力。 与 AI 研发战略计划相关的其他研发战略计划和方案包括《联邦大数据研究和发展战略计划》、9《联邦网络安全研究和发展战略计划》、10《国家隐私研究和发展战略》、11《国家纳米技术倡议战略计划》、12《国家战略计算计划》、13《推进创新神经技术脑研究计划》14 与《国家机器人方案》。15 涉及某10 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 些 AI 子领域的其他战略研发计划和战略框架处于发展阶段,其中包括视频和图像分析、健康信息技术、机器人和智能系统。这些额外计划和框架将提供补助和详细叙述本 AI 研发战略计划的协同建议。 (二)预期结果 本 AI 研发战略计划超越了近期的 AI 功能,着眼于 AI 对社会和世界的长期变革影响。AI 的最新研究进展让 AI 的潜力更为乐观,使行业得到迅猛发展,并让 AI 方法变得商业化。然而,虽然联邦政府可以利用 AI 的行业投资,但许多应用领域和长期研究挑战不会存在明确的近期利润驱动因素,因此不可能完全由行业进行解决。联邦政府是长期高风险研究计划以及近期发展工作的主要资金来源,以实现部门或机构的具体要求,或解决私营企业并不从事的重要社会问题。因此,联邦政府应该强调重大社会重要性领域内的 AI 投资,这不针对消费市场的领域,如用于公共卫生、城市系统与智慧社区、社会福利、刑事司法、环境可持续性和国家安全的 AI,以及加速 AI 知识和技术生成的长期研究。 跨联邦政府的 AI 协调研发工作将增加这些技术的积极影响,并为决策者提供用于解决与使用 AI 相关的复杂政策挑战的所需知识。此外,协调方法将有助于美国利用 AI 技术的全部潜力来改善社会。 本 AI 研发战略计划定义了一个高级框架,该框架可用于确定 AI 的科学和技术差距,并跟踪用于填补这些差距的联邦研发投资。AI 研发战略计划确定了AI 短期和长期支持的战略优先事项,以此来解决重要的技术和社会挑战。然而,AI 研发战略计划并未为个别联邦机构定义具体的研究议程。相反,其为行政部门设定了目标,在这些目标中,各机构可以根据其任务、能力、权威和预算来决定优先顺序,以便整个研究组合能与 AI 研发战略计划保持一致。 AI 研发战略计划也并未制定 AI 的研究或使用政策,亦未就 AI 对就业和经济的潜在影响作更广泛的探讨。虽然这些议题对国家至关重要,但它们在题为“人工智能的机遇和挑战,这次会有所不同吗?”8 的经济顾问委员会报告中进行了讨论。 AI 研发战略计划侧重于有助定义和推进确保 AI 责任、安全和权益用途的政策的研发投资。 11 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 (三)利用人工智能推进国家优先事项的愿景 推动此 AI 研发战略计划是未来世界充满希望的愿景,AI 将给所有社会成员带来显著益处。人工智能的进一步进展可以提升社会中几乎所有部门的福利,16让国家优先事项获得进展,其中包括促进经济发展、改善生活质量和加强国家安全。这种潜在利益的例子包括: 1、促进经济发展新产品和服务可以创造新市场,并提高多个行业现有商品和服务的质量和效率。通过专业决策系统创造更有效的物流和供应链。17通过基于视觉的驾驶员辅助和自动/机器人系统,18 能更有效地运输产品。通过用于控制制造工艺和调度工作流程的新方法来改善制造业。19如何促进经济发展? (1)制造业:技术进步能在制造业,包括整个工程产品生命周期内引发新工业革命。更多使用机器人技术能使制造业回归陆上。20AI 可以通过更可靠的需求预测、提升运营和供应链灵活性,以及对改变制造业营运的影响进行更好的预测来加速生产能力。AI 可以创造更智能、更快、更便宜和更环保的生产流程,这能提高工人的生产率、提高产品质量、降低成本并改善工人的健康和安全。21 机器学习算法可以改善制造流程的调度并减少库存要求。22 消费者可以从现时的商业级 3-D 打印中获利。23(2)物流:私营部门制造商和托运人可以使用 AI,通过适配调度和路线来改进供应链管理。24通过自动调整天气、交通和意外事件的预期影响,让供应链更加牢固难以中断。25(3)金融:工业和政府可以使用 AI 提供多种规模的异常金融风险早期检测。26安全控制可以确保金融系统自动减少恶意行为的机会,例如市场操纵、欺诈和异常交易。27他们可以进一步提高效率并降低波动性和交易成本,同时预防系统性失效,例如定价泡沫和低估信用风险。28(4)交通:AI 可以增强所有交通方式,实质上影响所有类型的旅途的安全。29它可以用于结构安全监测和基础设施资产管理,提高公众信任,降低维修和重建成本。30 AI 可用于乘客和货运车辆,从而通过增强情景意识来提高安全性,并为司机和其他旅客提供实时路线信息。31 AI 应用还可以改善网络级移动12 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 13 性并减少整个系统的能源使用和运输相关的排放。32(5)农业:AI 系统可以创建通往可持续农业的途径,使农业产品的生产、加工、储存、分配和消费更灵活。AI 和机器人能收集有关作物的特定场所和时间数据,仅在它们需要的时间和地点才应用所需的投入(例如水、化学品和化肥),并填补农业劳动力的紧迫缺口。33(6)营销:AI 方法能使商业实体更好地配合供应与需求,增加用来资助进行中资助私营部门发展的税收。34 其能预测和识别消费者需求 35,使他们以更低的成本获得更好的产品和服务。 (7)通信:AI 技术可以最大限度地有效利用带宽和信息存储和检索的自动化。36 AI 可以改进数字通信的过滤、搜索、语言翻译和摘要,积极影响商业和我们的生活方式。37(8)科学和技术:AI 系统可以协助科学家和工程师阅读出版物和专利,使理论与之前的观察值更一致,使用机器人系统和模拟、进行实验,并设计新的设备和软件。382、改善教育机会和生活质量通过用于制定专有学习计划的虚拟导师来实现终身学习,以此根据每个人的兴趣、能力和教育需求进行自我挑战和参与其中。通过为每个人定做和调整的个性化健康信息,让人们能过上更健康和更积极的生活。智能家居和个人虚拟助手可以节省人们的时间,并减少每日重复任务所损失的时间。 AI 将如何改善教育机会和社会福利? (1)教育: AI-增强的学习型学校随处可见,通过其自动化辅导能衡量学生的发展 16。 AI 辅导员可补充面授教师,还可以因材施教。16 AI 工具可以促进终身学习并让所有社会成员获取新技能。16(2)医学:AI 能支持从大规模基因组研究(如全基因组关联研究,排序研究)中识别出遗传风险的生物信息学系统,并预测新药物的安全性和有效性。39 AI 技术允许进行多维度的数据评估,以研究公共卫生问题,并为医疗诊断和处方治疗提供决策支持系统。40 AI 技术为个人提供药物定制;由此可提高医疗效果、患者舒适度和减少浪费。41(3)法律:通过机器对法律个案史进行分析会变为普遍。42

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。