数据标注:光鲜背后的付出

5到10年后,当人工智能全面普及,科技先驱和新一代商业巨子注定会被时代的聚光灯铭记。 但今天却想说一个关于人工智能“从未被讲出”的故事,写一群时代大幕后的“隐形者”——标数据的人。

 20180925161055475.jpg

智能时代滚滚巨轮之下,一批批用于“人脸识别”、“自动驾驶”、“自然语言处理”的标注好的数据,正是出自这些学历不高,每天对着电脑工作8到10小时的人手中——他们是“人工智能背后的人工”。经过采访了多个数据标注服务商、数据标注工作室和数据标注者。据业内人士估计,中国全职的“数据标注者”已达到10万人,兼职人群的规模则接近100万。他们中有职高学生,有尝试过40份工作的聋哑人,有从工地辗转而来的新生代农民工……他们源源不断地为人工智能的发展供应最重要的“数据燃料”——在现有的技术框架下,数据量越大,质量越好,算法模型就表现越好。可以说,数据决定着整个人工智能行业的发展态势。但标注工作本身是一个劳动密集型工种,收入并不高。随着技术的进一步发展,未来还有被取代的可能。许多数据标注者的父辈是参与了中国房地产奇迹的农民工。如今,父辈手里的铁铲变成了年轻人的鼠标、键盘,但和父辈一样,他们仍是边缘者。在这个除夕,他们也像父辈一样踏上了归乡的旅途,不仅是从城市回到乡村,也是从科技前线回到古老的火炉前。小志从贵阳坐了四小时的大巴回到山区家中,第一件事就是将钱塞到母亲手里; 犇犇给父亲买了新的电动剃须刀; 何军家在河南周口,打算把钱都存着娶媳妇,过年期间就要见几个相亲对象; 小袁想再挣点钱后换一副助听器,现在这个他已戴了好多年,把他不断长大的耳蜗磨出了新新旧旧的伤…… 我们无法预判他们的命运,但选择讲出他们的故事。这些科技进步背后的“无名者”值得一次认真的注视。

数据折叠
数据折叠人工智能的世界里,存在不为人知的“数据折叠”: 一边是炫酷的科技、神奇的智能应用;一边是大量人
工每天重复地生产机器学习的“食物”——标注好的数据。 北京和贵阳,是数据标注世界里的两座“双子星”城市。北
京聚集了大量人工智能公司;贵阳近年来着力发展“大数据战略”,已拥有相对完整的数据服务产业生态。 2017
年,仅北京中关村大数据产业规模就超过700亿元;贵阳2017年的大数据产业及其关联产业规模总量超过1500亿
元。AI行业的总规模也在持续增加,根据麦肯锡2017年4月发布的一份报告,到2025年,AI应用的总市场可能达到1270亿美元。 但标注数据的人,生活在这些巨额数字之外,拿着不高的工资,活动在“第二空间”。 从三里屯驱车1小时,行驶30公里,就到了北京邮电大学宏福校区。这里有北邮和华腾硕博合办的电子商务培训班,学生总数300多人,高峰时期,有120多人参与数据标注的兼职项目。 标注工作室占满了某栋教学楼二层的5个房间,150台电脑前坐着一群十八九岁的学生,正盯着电脑屏幕给图片拉框。他们流程化地操作鼠标——这些枯燥的工作,最终将用于热闹炫酷的无人驾驶项目。从做数据标注的教室窗口向外望,可以看到北邮的教一,那里有国际学院和计算机专业学生专用的机房。 兼职标数据的培训班学员一个月的收入在2000元左右。如果全职做,人均工资约4000到5000元。而坐在教一的未来算法工程师,刚毕业时,起薪就可能达到30万元/年。

BasicFinder旗下某数据工厂 培训班学员参与的标注项目,采用了目前数据标注行业的主流模式之一——“外包”。 某数据标注主管告诉「甲子光年」,AI数据标注的外包市场2011年开启,2015年真正开始,2016年下半年出现收缩,2017年又有了新一轮的爆发。 外包盛行,是因为人工智能的发展需要大量人力对非结构的数据进行加工,以用于机器学习。而创业团队和巨头公司,为了集中精力研发或保持团队的高学历占比,很少完全自建数据标注团队。 外包江湖门派众多、良莠不齐。 从业者是这样打招呼的,“你是发包方还是外包方?” BAT、人工智能创业公司,学术团体,以及政府、银行等机构都可能成为发包方。BAT和人工智能公司需求最大,学术团体次之,政府、银行等传统机构的需求最小但有不断增长的趋势。某数据标注主管告诉「甲子光年」,他目前所接触到的上述三类业务需求的比例为7:2:1。 某数据标注公司负责人透露,商汤、旷视这类大的人工智能公司,一年在数据上的支出有数千万。 在“外包方”一端,有 “众包”和“工厂”两种模式。前者是把任务通过平台转接给网民,如“百度众包”、“京东众智”、“龙猫数据”;后者是自己经营团队,对整个流程进行控制,如贵阳梦动科技经营了一个500人的“数据工场”;BasicFinder与二十来家“数据工厂”有长期业务合作,少则几十人,多则两三百人。而在规范的机构之外,还游离着三五人到十几人规模不等的“小作坊”。 许多机构在众包和自营工厂两方面都有涉足,众包平台上也有许多以团队为单位接单的“公会”。 算法公司和人才多集中在北深杭等科技核心区域,而作为一个“劳动密集型”的中低收入行业,数据标注人员散落三四线城市。 在距离贵阳市中心50公里的百鸟河数字小镇,有一个规模500人的“数据工场”,500名标注员中,近一半是附近一家扶贫高职“盛华职业学院”的学生。位于贵阳的“数据工场” 他们很珍惜这个接近“白领”的兼职机会,1月能挣到1500元,经济上足以自立,省点还可以补贴家用,相比其他兼职选择:去餐厅辛苦端盘子或顶着风雨送外卖,数据标注相对轻松且体面。 盛华学院大数据专业老师,同时也是贵阳梦动科技人工智能服务部总监的曹珊告诉「甲子光年」,她曾带着七个学生来北京某人工智能公司参加图像标注培训,通过后可留下来实习,但竞争激烈,五十九人只留十个,其中不少是北京本地学校的竞争者。最终,这7位来自贵阳的同学都留了下来。 这些年轻的数据标注者,一头连着最前沿的科技,一头连着他们正在回去的家乡——那里往往是贫困、闭塞的所在,是科技的影响力最微弱的“第三空间”。 小志是曹珊的学生,数据工厂腊月二十七才放假,小志坐了四小时大巴回到山区的家里,父母都务农,身体也不好,家里除了房子和田,唯一像样的财产是一头牛。 进高职前,小志甚至都没碰过电脑,唯一会的操作是按开关键。电脑极大地打开了他的世界,但也让他一度沉迷游戏。最严重的时候,课不上了,数据不标了,觉也不睡了。 曹珊为此和小志长谈了多次,目前小志的生活渐渐步入正轨,成了数据标注的小组长,手里带着十多个同学。 但未来工作前途的不可预期,相对低的收入,较大的家庭负担,仍然是这些年轻人无法摆脱的苦恼。 父辈的积累相当顽固,无论是财富、声望,还是贫穷和负担。父辈与我:从建筑工地到“智能工地”犇犇的人生在某种程度上,是对父亲的继承。 他是西安某数据标注工作室的标注员,犇犇和他所在的工作室代表了数据标注行业的另一种典型模式“小作坊”。 今年26岁的犇犇,先后做过厨师、进过工厂、推广过数种数字货币,但没有一份工作做得长久。 犇犇父亲在他这个年纪时,是镇上棉纺站的一名工人。2005年棉纺站关门,下岗后的父亲去甘肃当过两年钻井工人,此后一直在做建筑。 直到2017年12月初,犇犇还不知道数据标注这个工种。 当时他接到灵的一个电话,邀请他一起做数据标注工作室。灵和犇犇曾一起推广数字货币,行情最好时,一笔交易能拿两万提成。但好好的币,玩着玩着没了,他们的这次合作铩羽而归。 经历上一次失败后,灵又杀进数据标注领域,很快,她组建了15人规模的工作室,团队成员都跟犇犇一般大,氛围很好,他们常常一边标数据,一边聊天,时间并不难熬。 最难受的是眼睛。从早上九点到晚上六点,工作内容就是盯着屏幕给图片拉框。拉框要求十分精细,偏差丝毫都不行。犇犇眼睛干涩时,会起身去楼道抽烟。

犇犇所在的工作室 眼睛的难受熬熬就能过去,更愁人的是工资不高。 犇犇笑着说,入不敷出啊。他在供一套郑州的房子,每个月要还4700的房贷,而工资撑死就五六千。 在犇犇看来,这份工作也没什么前途:“跟电子厂一样,多做多得。” 犇犇的梦想是在全国开很多养老院,因为小时候的邻居是独居的七十岁老人,“没人养很可怜”。 但开养老院对现在的犇犇来说太难了,他养自己都难。 数据标注的晋升之路只有两条,每条都是窄门: 要么进数据公司,爬完标注员-标注组长-数据经理-数据总监这个链条,层层打怪升级;要么进人工智能公司当数据标注员,然后凭借超人毅力自学技术曲线救国。 前一条路不需要学历,但是千百人过独木桥,且依旧是在数据标注圈子里打转;后一条路能真正学到东西,但对学历有要求。 犇犇只有高中学历,连高考都没参加。因为不愿再读书,他跟父亲起过很大争执,父亲深知打工有多苦。高三的那个暑假,犇犇也去体验了一把:跟着父亲去工地上搬砖。 现在,他成了一名“智能工地”上的新型“搬砖者”。 对科技、社会和自身的关系,如今犇犇有清醒的认知:“人工智能就像是一个孩子,标注好的图片就像是孩子的食物,而我们就是制作食物的人,最苦最累的我们做了,成名的只是那些制造孩子的人。”犇犇说。 两代人的命运在此重叠。 农民工一砖一瓦垒起了实体城市的高楼;数据标注者一框一线搭建起了算法的智能。前者是城市的边缘者,高楼起来了,他们仍是边缘者;后者是科技世界的边缘者,机器变聪明了,他们还是边缘者。 犇犇会最终栖居在数据标注这份工作上吗?他给的答案是不确定的,他不知道这份工作是否不出几年就被取代,也不知道自己是否就此乖乖认命。 中国有五千多万的农民工以建筑为生,到了五六十岁还在工地上忙碌。数据标注的市场才刚打开,「甲子光年」从从业者口中得知,截止2018年年初,以数据标注为生的全职标注员规模达近十万,这个数字未来会继续增长,未来将达数十万。数字标注也将成为新生代农民工的聚集地。野蛮生长,坑与机会并存相比聚光灯之下的人工智能科技公司,数据标注行业是个在暗处的行业,存在大量灰色地带。 作为一个劳动密集型行业,进入门槛并不高,压低“成本”、“薄利多量”,就成了许多团队的竞争手段。 许多公司招的标注员都是没有交五险一金的临时工。7、8万的启动资金,就可以在四五线小城组起一个“工作室”。 AI公司也倾向压低成本——某数据标注公司主管告诉「甲子光年」,部分人工智能公司对数据标注的重视不够,过分压低预算,把项目外包给一些不靠谱的团队;这些团队做不完、做不了,又会把任务转包给另一些小团队,或重新找到大的数据标注公司,使质量和交期都无法保证。 “低价竞争和行业不规范导致的层层外包是行业的噩梦。”京东众智平台的负责人李工告诉「甲子光年」。 对小团队来说,外包直接折损了利润。 做过室内装修的何军,在2017年底投入十万积蓄作为启动成本,在河南周口成立了一个40人团队的数据工作室。他2018年的最大计划,就是“争取接到一手项目”。 “利润其实不高”,何军一边抖着腿,一边掰着手指头细细算账,“你看啊,一个拉框平均4分钱,一个员工一天能做大约4500个,一共180块。过关率90%,再除去审核的成本,再给每个标注员每天发110元左右的工资,平均下来工作室每天也就从每个人身上赚30块吧。”何军第一个月亏了本,第二个月勉强持平。 “开年就去跑工商注册,然后一家家联系大公司,得接到一手项目,给员工的多发点工资,现在太低了。”何军说。 小团队只能接二手甚至是好几手的项目,一手项目就像江湖传说,听过没见过。 处境相似的赵聪也特别想接到一手项目。他是2017年10月入场的标注者,自己攒了三个人的团队兼职做数据标注。“我们的项目都是从小公司手里接的,连发包方的名字都不知道”,赵聪说,“利润很低”,三个人,三个月,三个项目,每人也就获得了一千块收入。 大平台也反感层层外包,因为这严重扰乱行业秩序。 “数据标注看起来门槛很低,但其实管理的门槛并不低。价格、产能、交期和质量都要兼顾。很多小团队,拿到的项目自己消化不了,最后又会找到我们。”BasicFinder的杜霖说。 而针对一些特定的复杂任务,还需要进行足够的培训,有的培训期需要1到3个月。在理解客户需求、保证数据的多样性、随机性上,许多小团队也欠缺必要的能力。 层层外包,对数据标注员的直接影响是:摊薄了收入,钱被中间环节分掉:一手的项目在谁手上,价格多高,会经历多少层级,每层有多少利润,都是谜。 还有另一个角色在搅乱这趟浑水——代理人。 代理人说白了就是拉项目跑活儿的人,关系户,是中国人情社会里长出的变量。一些小公司会高薪养代理人,以期打通关键节点。 赵聪无奈地说,“靠关系吃饭的社会”,最末端的标注者最缺这种关系资源。 杜霖认为,这个行业经历了早期的疯狂生长,最终一定会经历一番洗牌,变得更为规范化、透明化。届时质量会取代成本,成为需求方最优先考虑的变量:“人工智能公司的本质需求是能找到靠谱团队。大家最后都会明白,背着抱着一边沉,想省的钱都省不掉,要保证质量,就是一分钱一分货。 ”大浪淘沙,有两类机构会最终留下来:注重质量及服务的中小型数据标注公司,以及自有整套数据技术的平台。 而犇犇、何军以及赵聪都有可能被行业清洗出去。还有5年,只有5年经营小工作室的何军已经开始紧张了,他听说算法升级后,将不再需要大量人工标注。由于对技术动向缺乏把握,他时常处于一种对未来的不安之中。 杜霖则认为,至少在5年内,数据标注行业的增长空间还很大,数据标注的市场才刚打开,数据需求将紧随人工智能的大规模落地引来一波爆发式增长。 首先,人工智能行业本身的发展,将进一步带动数据标注行业。目前能被建模量化的数据只占真实世界中的极少一部分。现有的数据标注业务主要集中在安防和自动驾驶领域,未来,随着AI深入更多垂直行业,新需求将不断出现。 何军告诉我们,前些天就出现了一个他没见过的标注内容,北航的学生找上门来,要对“积云”进行标注。杜霖也跟我们分享,他们做过一个很有意思的标注项目——标注指甲区域,因为客户要做美甲机器人。 其次,在现有的主流“有监督学习”的算法模型下,为了让算法有更高的准确率,数据不嫌多。Google的技术大牛Jeff Dean曾在一次公开课上展示一个海量数据的训练结果,如下图所示:横轴代表数据规模,纵轴代表准确率,蓝线是深度神经网络算法,绿线是传统训练方法。 可以看到,蓝线的准确率和数据规模及质量持续成正比,并没有出现趋于平滑的拐点,这说明深度学习对数据有源源不断的需求。第三,从感知智能到认知智能的跨越,需要的数据维度会更大,这可能催生更精细的数据标注需求——如对一段对话数据的标注,不仅要知道对话内容、语义,可能还需要标注谈话者身份、情绪变化等。 杜霖告诉我们,人工智能公司的总支出中,目前有20%-30%用于数据,现阶段大陆市场数据采集及标注的规模保守估计有五十亿。一个参考是,新三板上市公司数据堂2016年的营收达到了9680万元人民币。 京东众智平台的负责人李工对未来也很乐观,他认为,包括采集、标注、清洗等流程的数据市场未来将达上百亿。 但这一切都是基于“有监督学习”这个大前提。行业的一个变量是,如果算法从“有监督学习”升级为无监督学习、强化学习或迁移学习,数据标注需求将大大减少。 技术进步和跃升自有其规律,目前无监督学习等新算法仍然只是学界的探索,尚不能用在大规模的商业落地中。 杜霖判断,新的革新性算法,至少5年内都不会出现。Novumind创始人吴韧此前接受专访时则认为,深度学习加大数据就是人工智能的“way to go”,较难出现颠覆性的其他路径。 5年,对公司来说是一个可以布局、掉头的“窗口期”。京东众智的李工告诉我们,他们应对变化的策略是轻运营和“产品化”,着力研发加速AI落地速度的Pre-A.I.产品,并同时研发平台技术,做到“数据与流程分离架构”。数据标注本身不是他们的核心战略。

20180925161146555.jpg

BasicFinder也有类似布局,他们希望一手对接垂直行业里的数据生产者,一手对接上游的算法模型公司,共同推进AI的行业落地。 但对数据标注者个体来说,5年后,也许就不得不面临再一次“失业”。到时,他们还能跟随时代的脚步腾挪转移吗?烫手的小袁小袁暂时想不到5年后那么长久的事。 作为一名换过40份工作的聋哑人,他很庆幸,终于在“数据标注”领域成了“有用的人”。 小袁是京东众智平台上“静公会”的聋哑人标注员,这个公会全部由听障人士组成。 先后在餐厅、奶粉厂打工的小袁,总是因为无法避险、难以沟通被辞退:“我是烫手的小袁,因为我是聋哑人,所以我总是会烫到身边的人,被扔出很远很远。”相比过去的工作,数据标注的安全性更高,但也需要相互沟通。 杜霖和残疾人群体深入交流后发现,聋哑人的世界里多为名词、缺乏形容词,比如要向他们解释这根线标得不“直”,就会比较费劲。由于输入信号会被挡掉一半,所以聋哑人接受速度只有健全人的三分之一到五分之一。健全人一周能搞定的培训,聋哑人要花三周或更久。 但是他们的优点是专注、较劲儿、对视觉信号敏锐,数据标注行业对他们来说是机会。 齐工是京东众智平台的培训讲师,几乎每天都去给小袁和工友讲课。齐工说,“想当把英雄,承担更多的责任。”齐工给聋哑人培训,左一为齐工,右一为小袁 第一次,他们在工作中找到了归属感。像小袁这样的聋哑人在众智平台上还有一千多名,京东为他们成立专门的“静公会”,项目上优先照顾。全职每月有三四千收入,兼职每月有一千以上收入。 杜霖手下也有三个残疾人团队,总共约80人。杜霖和京东负责人都表示,愿意为更多残疾人提供工作机会。 在数据标注这份职业消失之前,这里是他们的家。其中的少数人,也许能通过转型为数据质检者,获得更长期的职业生涯。杜霖将公司取名为BasicFinder, 初衷是找到人工智能世界中最本真的一层关系——数据。新生代农民工和聋哑人,投身于数据标注这份工作中,也是希望找到最本真的生活。他们的要求很朴实,用犇犇的话来讲是:有一份稳定的工作,有一个幸福的家庭。但科技的发展,必将带来智能升级,也使整个行业更加规范化。这有点像武士的悖论:武士存在是为了消灭敌人,但是消灭了敌人武士也就失去了存在的理由,这个意义上,他们是在消灭自己。数据标注者的工作是帮机器更好的学习,促进人工智能行业的发展,而当行业发展到一定阶段,可能将不再需要如此众多的人工标注。其实整个人工智能的发展历程也有点像“孤独的武士”:人类发明了机器,到头来机器很可能取代大部分人工,甚至是“发明者”本人。但是,是武士,就必须去消灭敌人。对知识的无限追求既是人类的天赋也是人类的危险,它早已深藏于我们的基因之中,呼唤我们不断逼近未知边界。更高的智能一定会到来,认知差距将取代财富差距成为最显著的人群划分标准——那可能是一种更无形的“折叠”。未来,当我们真正享受智能带来的各种便捷时,历史会遗忘这些人工智能领域的“首批工人”吗?这可能是除了技术水平之外,判断那个未来是好是坏的更重要的标准。

推荐文章

   一片小小的人工智能视觉芯片能做什么?无人驾驶汽车主动识别并避让行人、摄像头实时甄别在逃犯……这些影视作品中的情节,或许不久将可通过基于嵌入式人工智能视觉芯片的“解决方案”成为现实。  人工智能芯片被视为未来人工智能时代的战略制高点。在视觉感知领域,人工智能视觉芯片正逐步应用于智能手机、安防监控、自动驾驶、医疗成像和智能制造等领域。  可根据AI需求成像  纵观信息产业发展历程,从个人电脑时代到移动互联网时代,承载高性能计算的芯片决定新型计算平台的基础架构和发展生态,并掌握着产业链最核心的话语权。  中国科学院院士张钹指出,传统硬件架构难以满足人工智能时代深度学习的要求,新的算法需要新的硬件来支撑。同时,芯片的结构将越来越像“大脑”,类脑芯片、智能芯片等将是人工智能的发展方向。  “所谓视觉芯片,实际上是一种具有高速图像采集和实时图像处理功能的片上集成系统芯片。”中国科学院半导体研究所半导体超晶格国家重点实验室研究员吴南健介绍说,在日前举办的国家自然科学基金优秀成果北京对接会上,吴南健带领研究团队展示的新型视觉芯片(VisionChip)科研成果很是引人注目。  据介绍,这种视觉芯片集成高速图像传感器和大规模并行图像处理电路,能够模仿人类视觉系统视觉信息并行处理机制,解决现有视觉图像系统中数据串行传输和串行处理的速度限制瓶颈问题。  吴南健解释说,人工视觉的架构分两部分,类似于人的眼睛和大脑。人的眼睛是一个典型的图像传感器,能够摄取图像并且进行一些噪音去除等初级图像处理;人的大脑神经元网络是一个视觉图像处理系统,具有非常强的对所摄取的视觉信息进行并行处理的能力。  AI视觉芯片与摄像头的关系是——芯片做的是大脑,摄像头做的是眼睛。这里就存在一个问题:大脑该如何控制眼睛?远望智库人工智能事业部部长、图灵机器人首席战略官谭茗洲解释道,传统的技术方法是定义一个通信控制接口,但在视觉应用中这种做法会非常复杂。人眼的成像是非常聚焦的,只看到关注的东西。当AI算法解决了“要看什么”的问题后,前端成像就有了目标,可以把所有的资源都调配到关注的对象上,做到“指哪打哪”,也就是取出噪音的处理过程,可以更高效智能地处理视觉信息。这种根据AI的需求来成像,能解决很多以前解决不了的问题。  “通常以前处理的方式,是通过摄像头把信息摄录,传到服务器或云端后,利用服务器上的显卡进行运算,现在是将视觉芯片嵌入摄像头,让其本身可以处理信息,做成专用芯片,如果芯片大批量生产,在价格上会便宜非常多,极大降低成本。这就是目前这项技术突破的核心价值。”谭茗洲在接受科技日报记者采访时指出。  比人类视觉更具优势  在我们通常的印象中,一个视力正常的人可以迅速且毫不费力地感知世界,甚至可以详细生动地感知整个视觉场景;但其实这只是一个错觉。  “人类生理视觉有着天然的局限,只有投射到眼球中心视觉场景的中间部分,我们才能看清楚。比起人眼来,嵌入视觉芯片的机器将具备相当多的优势,因为可以传感更宽的频谱范围、更高的清晰度、更宽的视角,其视力远不止5.0,在夜间也可以看得很清楚。如同AlphaGo战胜‘围棋天才’一样,在某些应用场景,其视觉在准确性、客观性、稳定性等方面都要比人类视觉更具优势。”谭茗洲指出。  吴南健介绍说,目前,国内外在人工视觉芯片领域的研究主要是CMOS图像传感器芯片技术、并行图像处理技术和CMOS集成技术。在CMOS图像传感器领域,国际技术水平朝着高分辨率、宽动态范围、高帧率、高智能化、宽波长范围和三维成像的方向发展。人工视觉系统芯片能够完成图像获取和初级(图像滤波)、中级(特征提取)、高级(特征识别和不规则处理)3个图像处理步骤。  “视觉芯片关键要解决运行效率和处理3D影像这两个问题。以往视觉芯片处理信号面临的最大问题是因运算量太大导致处理信息速度低,以及摄取的照片是把三维世界‘压缩’成二维影像,在一张平面上已分不清物体距离远近、立体空间形状、空间位置等,而人眼可把这个还原。”谭茗洲表示。  记者了解到,新型人工智能视觉系统芯片,是将高速CMOS图像传感器、并行信号处理单元和输出电路集成于单一芯片内,实现实时视觉芯片系统。将不同功能的技术集成在一个芯片上有很多优势,实现图像获取和图像信息处理每秒一千帧的系统速度,可广泛应用于高速图像处理、快速图像识别解释、高速运动目标的实时追踪等领域。  谭茗洲指出:“目前,中科院设计的新型视觉系统芯片理念非常先进,仿照人类视网膜神经元机制设计,感光对信号的处理方式,拣取有用的信号进行处理,极大地减少了运算的体量。”  未来市场空间巨大  “以我个人的观点,视觉系统芯片会成为必然的趋势,就像手机和相机结合成就智能手机一样,目前在技术上已突破填充率低、分辨率低和信号干扰严重的难题,将科研成果转化并投放市场只不过是时间问题。”吴南健表示。  记者了解到,目前基于该技术的产成品已经试用于一些创新企业,比如在工业产品的自动化检测领域完全可以使用视觉系统芯片代替人工检测;在智能监控领域,过去需要将视觉处理芯片装在具有传感器技术的摄像头上,通过把数据结构化、再压缩送到数据中心的复杂方式完成数据传输和计算。  那么,视觉系统芯片如果在未来实现产业化,其市场空间有多大?据推算,2018年,图像传感器的市场规模在150亿美元左右,虽然其中120亿美元发生在智能手机领域,但未来发展比较快的4个领域是安防、国防、汽车、医疗,到2021年将会迎来40亿美元的市场空间,年增长率约10%—20%。  “视觉处理器的需求增长会更快,目前该市场的整体规模(包括硬件、软件、服务)在170亿美元至180亿美元,单从硬件来看也占到约30亿美元。如果视觉系统芯片可以覆盖70亿美元的市场规模,企业在这中间拿到1%的话,其盈利空间就已经很大了。”吴南健指出。  近年来,国内外一批新型人工智能企业,依托人工智能领域技术和算法优势向芯片行业渗透,加强人工智能芯片基础层研发。从市场格局来看,已经发展成为一个相对独立又相互依存的产业生态。在前端,索尼是图像传感器市场、生产和技术的领导者,紧随其后的三星和豪威科技也保持着不错的竞争力;在后端,Mobileye和英伟达(NVIDIA)是提供视觉处理芯片的主要厂商,在国内该领域的公司有地平线等。  然而,截至目前,尚未有企业实现“图像传感器+视觉处理器”集成式芯片的大规模量产。不管是现在的创业企业,还是已经在市场上占有一定份额的大企业,不是做图像传感器,就是做后端的视觉处理器。正如吴南健所言,这将给初创企业带来机会。 

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。