人工智能数据标注领域的核心需求

timg.jpg

随着人工智能落地商业化进入快车道,无人驾驶、人脸识别、智慧安防等领域成为了热门的应用场景,AI公司关注的重点开始聚焦于产业落地能力上。

作为人工智能行业的基础,数据是实现这一能力的决定性条件之一。因此,为机器学习算法训练提供高质量的标注数据服务成为了决定人工智能应用高度的重要条件之一。

相关资料统计显示,2025年产生的数据量将高达163ZB,其中90%是非结构化数据。这些非结构化数据只有经过清洗与标注才能被唤醒价值,这就产生了源源不断的清洗与标注需求。数据标注行业因此得以迅速繁荣扩张。

随着产业落地成为行业发展大势,更具前瞻性的海量数据集产品和高度定制化服务成为了数据标注行业的主要服务形式。然而,由于数据标注行业存在门槛较低、服务质量参差不齐等问题,需求方在选择数据服务时往往会遇到数据质量、服务效率、数据安全、管理能力、服务能力等痛点,这些痛点已成为阻碍行业发展的核心问题。


timg.jpg

1. 数据质量

监督学习下的深度学习算法训练十分依赖于标注数据,数据集质量的高低将直接决定算法模型的效果。

然而,目前数据标注行业存在很严重的数据质量问题。相关数据显示,当下数据标注行业单次交付达标率低于50%,三次内交付达标率低于90%,远远不能满足AI企业的需求。

需求方希望数据服务公司可以提高首次交付项目的准确率,并大幅减少返工情况。

2. 服务效率

目前数据标注行业主流的项目运营方式是以“众包”以及“转包”为主,数据服务企业很难对标注团队做到直接有效的管理,因此项目延期成为了一种常态。

对于需求方来说,项目延期意味着在激烈的商业竞争中丧失先发优势,所以对于需求方来说,希望数据服务公司拥有高效的项目执行系统,提高工作效率,可以按时甚至提前完成项目。

3. 数据安全

数据标注行业的特殊性意味着要经常接触到很多敏感的数据,比如人脸数据、车牌数据等等,这些数据的存储、传输等对于安全性的要求极高。

因此,需求方希望基础数据服务商有明确具体的安全管理流程,对数据传输、存储,以及结项后的数据销毁等环节足够重视。

4. 管理能力

“众包”以及“转包”模式下,管理能力较弱的公司很难在兼顾多个项目时做到精力集中、高质量地服务客户,这样的后果就是项目延期、数据质量差。

因此,需求方希望数据服务企业能够建立完善的内部管理流程,优化项目流程体验,达到效率与质量的双提升。

5. 服务能力

数据标注业务从本质上来讲也属于一种服务业务,从项目对接到最终项目的完结,每一个环节都需要需求方与数据服务企业不断地商讨,从而做出最优解。

所以,需求方希望数据服务公司能够在项目进行中做到积极配合、快速响应,并可以对项目提出一定的优化建议。

以上五点是需求方对数据标注企业的核心诉求,如果这五点分别对应相应分数的话,那么总体得分越高就意味着越契合需求方的要求,就越能在激烈的竞争中占据排他性的优势。

对于数据标注企业而言,单纯依据客户项目的诉求进行执行略显被动,主观能动性低、行业边界有限,各家数据标注企业的产品和服务就将趋于同质化,竞争也会加剧,不仅不利于自身发展,同时也会制约着AI基础数据服务行业的发展。

所以,主动做出改变,迎合需求方的核心诉求,数据服务企业才能在激烈的市场竞争中建立差异化的优势,尤其在AI商业化落地加快的大背景下,能够在垂直场景中建立一套完整的数据整体解决方案,将在未来的市场竞争中增添重要的优势砝码。


推荐文章

    目前AI行业发展火热各大巨头都投入巨资在此领域布局,智能驾驶、人脸识别以及近段时间正火的AI养猪都是AI技术应用在实际生活上的体现,毫不夸张的说AI技术正在逐渐改变我们的生活而我们的生活也将因此变得更美好。     AI的发展离不开数据标注的支持,而目前AI行业庞大的数据标注工作都 是通过 哪种模式完成的呢?     一、常见的数据标注平台由于数据标注的重要性和高质量标注好数据的稀缺性在催生了一大批专职做数据标注团队的同时也催生了一批数据标注平台,比较有名的有百度众测、京东众智、龙猫数据、数据堂等。众所周知百度在互联网大厂是最早开始且投入巨资研Ai 技术的,所以百度众测平台的任务大部分都是百度内部的需求,他们也会接受其他AI公司的数据需求,但是在数据量和价格上会有限制。相比百度而言其他几家数据标注平台就比较亲民一些了,中小型的AI公司的需求一般都会接受。为什么这个地方没有提到大型AI公司呢?那是因为大型AI公司一般都会自建平台且有专门的数据标注团队负责公司的数据需求。二、数据标注平台的业务模式(1)众包模式:现在数据标注通常采取众包的模式,众包模式的优点就是成本较低响应较快。这种模式适用较简单的项目如点点拉框等项目。发布者往往将任务详细介绍和题目一同发送到平台上供广大数据标注兼职人员作答。但众包模式有一个很明显的问题就是质量较难把控,因为众包模式是面向大众的你并不知道在给你做标注的是什么人,他们可能是厨师,是全职太太,是老师每个人对规则的理解不尽相同且不可避免的会有一部分对任务乱答一通影响项目质量。为此各平台也会使用一些方式减少问题的产生提高项目质量。比如增加改判环节一道题在答完之后会由他人进行改判如若判错则不获得任务报酬,此外为防止错判维护答题人员利益还会设置申诉环节使答题人员对有疑问的题目进行申诉。设置标注人员级别,标注人员任务正确率较高答题数较多则能慢慢提高等级解锁更多任务获得更多的任务报酬且有机会进入改判环节成为改判员。(2)外包模式外包模式与众包模式相对是将任务外包给专门的数据标注公司和团队,在项目一开始会对项目整体进行评估然后针对项目整体进行报价由数据标注公司自行安排培训安排人手,只需要保证在项目截止日期前保质保量交付数据即可。这种模式的优势就是数据质量和项目周期有保证。但是响应速度较慢成本较高,因为一开始需要安排竞标且平台需要安排专门的项目人员进行项目对接和项目跟进。现如今国内专门做数据标注的团队较多,但是大多数只是以工作室和几十人的小团队为主且业务类型集中在简单的拉框图像标注上。也有一些的较大型的公司如贵州的梦动科技已经形成产业化带动了当地的发展。又或者是“点我科技”他们自建有平台可以自研工具同时担任着数据标注平台和数据标注公司两种角色。基于以上两种业务模式的答题模式:A模式:A模式指只进行一次答题模式,后续没有改判操作。这种模式应用较少主要用于较简单正确率要求不高的项目。AC模式:AC模式指在答题完成后会有一个改判流程,改判员只能对题目进行正误的判断不能在答题的基础上进行操作。ACC模式:ACC模式和AC模式的主要区别是AC模式不能够之前的答题情况作出更改,而ACC可以更改。三、制约数据标注平台发展的因素业务模式一个好的业务模式能不断拔高一个平台的业务上限,上面介绍的两种常见的业务模式(众包模式和外包模式)因为他们都有各自的优缺点,所以单一的使用任何一种业务模式都是不可行的。单存使用众包模式会带来项目质量难以把控,风险高的问题,且众包模式只适合承接比较简单的需求。单一使用外包模式则会造成对数据标注团队的过度依赖,降低整个平台的活力,造成平台现有人力资源的浪费。对此我们需要两种模式兼用初期需要投入一定的资源建立自已平台的众包团队,这个人数一定要多只有这样才能保证有足够的活跃人数能够完成数据标注任务,同时还要一直有众包任务才能保证这些人一直活跃。众包团队建立起来之后我们就可以将简单的任务通过众包模式发放出去,一些复杂专业性比较高的任务则通过外包模式发放出去即可。数据标注团队一个数据标注平台必须要足够的数据标注团队才能承接更多的需求,为了增加平台上入驻的团队数量我们需要提高平台内部的活跃度同时平台上有足够的任务。每个标注团队往往都有擅长的业务类型,我们也需要根据不同团队的特点发放给他们不同的任务。任务需求一个平台要想不断发展一定要有足够的任务,增加平台承接的任务则需要提高平台的知名度,提高平台的知名度可以通过广告投放,客户口碑传播,搜索优化等方式。同时还需要一个有力的商务团队。参考原文地址:https://blog.51cto.com/14065470/2355532

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。