数据标注公司如何在人工智能大发展浪潮中迎来大发展

“从深度学习到AI产品的广泛应用,我们正在走入新一轮的效率革命。那么问题来了,我们应该如何在波涛汹涌的AI浪潮中站在数据标注行业的前沿,而不是被大浪所吞噬而衰退呢?”

 

我们就具体如何做进行几点浅谈。

准确判断数据标注需求公司的的需求方向

市场需求在现实中是瞬息万变的,有在研发层面需要快速进行产品迭代的AI公司;有在应用层面需要大批量数据进行机器学习的AI公司。我们能够准确的把握此类公司的需求其实是最重要的一点。针对不同类型的公司所面临的具体需求如下所述:

1. 快速研发提供第三方服务的AI公司

他们对数据标注要求的结果就是反馈快、提交快、质量准确。因为在这个AI公司如雨后春笋般崛起的时代,研发产品的速度基本就等同于AI公司的核心竞争力。对于这类公司,数据标注公司能够做到反馈够快、沟通简洁、提交数据够快,就可以拥有行业竞争力。

2.应用层面需要大批量数据进行机器学习的AI公司

他们对数据标注的要求就是团队稳定,标注质量稳定,有能匹配其数据量的标注规模。对于这类公司,数据标注公司能够做到自身团队稳定,有一定规模,标注质量稳定,就可以拥有行业竞争力。

精准定位数据标注需求公司的拓展范围

通过阅读“如何运营一家数据标注公司(资源特点篇)”我们可以清楚的知道,目前标注市场上需求公司的种类,以及这些需求公司各自的特点。那么我们这里要详细介绍的是我们可以用什么样的方法找到数据标注需求公司,以及这些方法所存在的优劣势。

1.实地拜访

这要求我们脑海中需要有一个大概的走访范围。就融资的分布与创业企业的注册地址来说,北京、上海、广州、深圳、杭州。这5个城市包含的创新型企业最多,其中不乏众多人工智能企业。如果我们要从实地拜访出发,我们首先就要对上述几个重点城市的科技园、创业园等分布进行仔细的分析了解,做到有的放矢。

优点  可以快速的与需求公司建立起来彼此联系,而合作关系一旦建立,此类关系相对稳定。同时,实地拜访也有利于数据标注公司更直观的感受到合作方的规模,可以给予数据标注公司在是否能够进行长期合作这个问题上提供有效参考。
缺点  联系成本高昂,因为AI公司的地域特性,导致在联系相关公司期间的差旅费是一比不小的支出。同时BD要求专业化程度较高,这里的专业化主要指与数据标注需求公司面对面对接的人需要有较强的逻辑处理能力,在进行沟通的时候,除了数据标注公司自身工作流程的详细介绍之外,还需要针对客户的不同需求提供不同的解决方案

2.电话走访

和实地拜访的范围一样,电话走访我们首先需要一个范围。从什么地方获取数据标注需求公司的联系方式?这个仁者见仁,智者见智。在互联网高度发达的今天,信息已经无处遁行,只要我们多留意相关AI的版块,新闻,我们就可以通过其中获取的信息找到对应的公司。
优点  联系成本低,可以进行普遍的撒网,尤其是在这个AI语音智能化的时代,电话的沟通效率和沟通质量可以成倍的增长。
缺点  通常数据标注需求公司的电话对接人变动性较强(今天接电话是张三,明天有可能就是李四),这种情况的频繁发生就会让我们前期所希望的回访变成了一句空话,因为换一个电话对接人,其实所有工作就等于重头开始。

3.参与会议

随着AI浪潮的涌现,以及国家决策层面将人工智能列为国家未来的战略性技术,由各类单位牵头举办的大小会议也如疾风骤雨般扑面而来,下面我就对各种会议进行一个介绍,方便大家了解。

 

推荐文章

人工智能时代下,数据标注不应该被陌生  人工智能的兴起带火了一系列与其相关的产业,数据标注作为其基础产业之一,也在人工智能的加持之下短短几年内迎来了飞速的发展。然而对于不少人来说,数据标注仍具是一个“盲区”。那么什么是数据标注,他又是如何助力人工智能发展的呢?         要想了解数据标注,首先需要了解人工智能的学习方法。监督学习是目前应用最广泛的机器学习算法,该方法强依赖标注数据,它通过学习大量标注的训练样本来构建预测模型。深度学习也需要大量数据的“投喂”,以深度学习为代表的机器学习框架都需要在大型的监督数据集上进行训练,百分点首席算法科学家苏海波曾表示,深度学习只有在拥有充足标注数据的场景下才能发挥它的威力,但在很多实际的应用中却没有足够的标注数据。  《2019 年中国人工智能基础数据服务行业白皮书》分析指出,2010-2016 年为数据服务行业的“初生期”,早期数据标注需求激增,加之入行门槛低,涌入了大量玩家,鱼龙混杂。  自 2017 年以来,伴随着 AI 深入落地到各个应用场景中,数据标注行业了进入成长期,上层应用端的厂商对数据标注质的要求不断提高,如自动驾驶、运动图像、计算机视觉等领域的数据标注难度很高。  行业格局渐渐清晰,马太效应明显。据了解,国内从事数据标注业务团队约有几百家,其中独立做整个数据质量服务的约百余家,能够提供数据采标服务一体化的有几十家,能够提供高标准基础数据服务的仅有十几家。  这些意味这目前,数据标注行业仍旧处于一个快速发展的阶段,整体在朝着个性化、专业化的方向发展,从早期较简单的、通用的数据过渡到更复杂的个性化的、场景化的数据,对于很多细分领域,需要大量真实的模型进行标注去迭代模型。    行业的发展核心内驱力是人才。在数据标注行业飞速发展的背景之下,如何加强人才的培养和输出,为行业提供更多人才成为了目前亟待解决的问题。AI优评结合相关部门,对于数据标注人才的培养建立起了一整套科学专业的评价体系,并直接对接到用人单位,为行业输送人才,保障行业的发展。相信在努力之下,未来,数据标注将会以一个全新的面貌展现在所有人的面前。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。