阿里巴巴神密的人物抠图算法内幕

 

电商环境中,商品的图片展示比文字展示对顾客购买有更直观的吸引力,尤其在购买衣服时。阿里巴巴的百万卖家各个都是ps大师,想必大家都领教过^_^。
传统的方法需要富有经验的设计师交互式的抠图,效率低下,阿里巴巴的视觉研究团队希望使用技术手段帮助卖家一键完成非幕布的自然场景人物抠图。

发表于ACM MM2018会议的论文《Semantic Human Matting》,揭示了阿里巴巴在这方面的数据库和算法设计。


论文称,这是第一个能够完全自动化精细抠图的工作。(其实前几天52CV君介绍了一篇SIGGRAPH2018的论文语义软分割也是类似算法,而且开源了)

下图展示了抠图的应用,计算图像的alpha mate,可以方便将其与其他背景图像合成。

数学上表达这个合成的过程很简单:

F是前景即人物图像,B是背景图像。

数据库制作HUMAN MATTING DATASET
要解决这个问题,首先需要有大规模数据库,学术界研究Matting的数据库往往都很小,难以训练出较满意的结果。
这一步,某宝卖家立大功了!为科研做出了杰出贡献!
论文从某电商平台(嗯,论文中没明说)收集了188K幅由卖家手动抠出来的含有alpha mate的图像,花了1200个小时(50个24小时)从中小心翼翼选择了35311幅高质量含人物的图像,并结合DIM数据集(含有202幅前景图,与自然图像合成20200幅图像),组成了含有52511幅图像的超大规模的Human Matting Dataset。
human matting dataset数据源组成:

human matting dataset与其他同类数据库的比较:

部分数据库中图像示例:

网络架构
该文使用结合语义分割的端到端的深度学习神经网络预测alpha mate。
网络结构如下:

该网络(SHM)主要分为三大部分,T-Net,M-Net,Fusion Module。
T-Net为语义分割模块,使用PSPNet,输入是原始图像,其输出结果是含有前景、背景、未知区域三种类别图像的三色图(trimap)。语义分割是一种粗略的前景提取。
注:在传统Matting的场景中,三色图trimap是由用户手动标注的,可以理解为对图像“完全正确的粗略分割”。
M-Net是细节提取和alpha mate生成网络,使用类VGG16的网络结构,其输入时原始图像和T-Net输出的三色图。
Fusion Module是对T-Net输出的三色图中前景和M-Net输出的alpha mate的加权融合模块,目的是结合语义分割和细节提取进一步提精alpha mate。

网络训练的时候,T-Net和M-Net事先单独预训练,然后整个大网络端到端训练。

实验结果
因为以往算法都需要人工交互得到的三色图trimap来比较matting的性能,而本文算法是完全自动的。为便于比较,作者设计了两个实验。将alpha mate与groundtrut相比较的具体评价标准不再赘述,感兴趣的读者请阅读原论文参考文献21。
1.将T-Net生成的三色图作为传统算法的三色图输入,比较算法生成的alpha mate质量。
结果如下:

该论文的全自动的SHM算法取得了明显的优势!

2.将手动标注的三色图作为传统算法的三色图输入,比较算法生成的alpha mate质量。
结果如下:


该论文的全自动的SHM算法尽管不是最好的结果,但已经取得了与有人工交互参与的最好结果相匹敌的性能。

下面是算法在测试图像上生成的结果示例图像:

作者然后进一步研究了算法中各部分对性能的影响,发现各部分均有贡献,其中“end-to-end”的训练获得最大的算法性能增益。

算法各部分输出结果可视化:


a为原图,b为T-Net生成的三色图,c为M-net输出的alpha mate值,d为最终融合模块预测的结果。

下面是SHM算法在实际自然图像中抠像并合成新背景的图像:

52CV君认为自然场景的人物抠图还是蛮有意义的,用在移动视频直播换背景等将大有可为。
这篇论文挺有价值,但更有价值的是某宝卖家给阿里贡献的这个数据集!希望官方能够提供下载就好了。

工程主页
https://arxiv.org/abs/1809.01354v1

推荐文章

    目前AI行业发展火热各大巨头都投入巨资在此领域布局,智能驾驶、人脸识别以及近段时间正火的AI养猪都是AI技术应用在实际生活上的体现,毫不夸张的说AI技术正在逐渐改变我们的生活而我们的生活也将因此变得更美好。     AI的发展离不开数据标注的支持,而目前AI行业庞大的数据标注工作都 是通过 哪种模式完成的呢?     一、常见的数据标注平台由于数据标注的重要性和高质量标注好数据的稀缺性在催生了一大批专职做数据标注团队的同时也催生了一批数据标注平台,比较有名的有百度众测、京东众智、龙猫数据、数据堂等。众所周知百度在互联网大厂是最早开始且投入巨资研Ai 技术的,所以百度众测平台的任务大部分都是百度内部的需求,他们也会接受其他AI公司的数据需求,但是在数据量和价格上会有限制。相比百度而言其他几家数据标注平台就比较亲民一些了,中小型的AI公司的需求一般都会接受。为什么这个地方没有提到大型AI公司呢?那是因为大型AI公司一般都会自建平台且有专门的数据标注团队负责公司的数据需求。二、数据标注平台的业务模式(1)众包模式:现在数据标注通常采取众包的模式,众包模式的优点就是成本较低响应较快。这种模式适用较简单的项目如点点拉框等项目。发布者往往将任务详细介绍和题目一同发送到平台上供广大数据标注兼职人员作答。但众包模式有一个很明显的问题就是质量较难把控,因为众包模式是面向大众的你并不知道在给你做标注的是什么人,他们可能是厨师,是全职太太,是老师每个人对规则的理解不尽相同且不可避免的会有一部分对任务乱答一通影响项目质量。为此各平台也会使用一些方式减少问题的产生提高项目质量。比如增加改判环节一道题在答完之后会由他人进行改判如若判错则不获得任务报酬,此外为防止错判维护答题人员利益还会设置申诉环节使答题人员对有疑问的题目进行申诉。设置标注人员级别,标注人员任务正确率较高答题数较多则能慢慢提高等级解锁更多任务获得更多的任务报酬且有机会进入改判环节成为改判员。(2)外包模式外包模式与众包模式相对是将任务外包给专门的数据标注公司和团队,在项目一开始会对项目整体进行评估然后针对项目整体进行报价由数据标注公司自行安排培训安排人手,只需要保证在项目截止日期前保质保量交付数据即可。这种模式的优势就是数据质量和项目周期有保证。但是响应速度较慢成本较高,因为一开始需要安排竞标且平台需要安排专门的项目人员进行项目对接和项目跟进。现如今国内专门做数据标注的团队较多,但是大多数只是以工作室和几十人的小团队为主且业务类型集中在简单的拉框图像标注上。也有一些的较大型的公司如贵州的梦动科技已经形成产业化带动了当地的发展。又或者是“点我科技”他们自建有平台可以自研工具同时担任着数据标注平台和数据标注公司两种角色。基于以上两种业务模式的答题模式:A模式:A模式指只进行一次答题模式,后续没有改判操作。这种模式应用较少主要用于较简单正确率要求不高的项目。AC模式:AC模式指在答题完成后会有一个改判流程,改判员只能对题目进行正误的判断不能在答题的基础上进行操作。ACC模式:ACC模式和AC模式的主要区别是AC模式不能够之前的答题情况作出更改,而ACC可以更改。三、制约数据标注平台发展的因素业务模式一个好的业务模式能不断拔高一个平台的业务上限,上面介绍的两种常见的业务模式(众包模式和外包模式)因为他们都有各自的优缺点,所以单一的使用任何一种业务模式都是不可行的。单存使用众包模式会带来项目质量难以把控,风险高的问题,且众包模式只适合承接比较简单的需求。单一使用外包模式则会造成对数据标注团队的过度依赖,降低整个平台的活力,造成平台现有人力资源的浪费。对此我们需要两种模式兼用初期需要投入一定的资源建立自已平台的众包团队,这个人数一定要多只有这样才能保证有足够的活跃人数能够完成数据标注任务,同时还要一直有众包任务才能保证这些人一直活跃。众包团队建立起来之后我们就可以将简单的任务通过众包模式发放出去,一些复杂专业性比较高的任务则通过外包模式发放出去即可。数据标注团队一个数据标注平台必须要足够的数据标注团队才能承接更多的需求,为了增加平台上入驻的团队数量我们需要提高平台内部的活跃度同时平台上有足够的任务。每个标注团队往往都有擅长的业务类型,我们也需要根据不同团队的特点发放给他们不同的任务。任务需求一个平台要想不断发展一定要有足够的任务,增加平台承接的任务则需要提高平台的知名度,提高平台的知名度可以通过广告投放,客户口碑传播,搜索优化等方式。同时还需要一个有力的商务团队。参考原文地址:https://blog.51cto.com/14065470/2355532

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。