人脸识别主要算法原理

人脸识别主要算法原理

主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。

1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;
2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。
3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。

1. 基于几何特征的方法

人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。
    采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

可变形模板法可以视为几何特征方法的一种改进,其基本思想是 :设计一个参数可调的器官模型 (即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。
    这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。 基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。 

2. 局部特征分析方法(Local Face Analysis)

    主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。

3. 特征脸方法(Eigenface或PCA)

特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点, 也称为基于主成分分析(principal component analysis,简称PCA)的人脸识别方法。
    特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。

实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。 
    基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。现在Eigenface(PCA)算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。
    该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。其技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。Turk和Pentland提出特征脸的方法,它根据一组人脸训练图像构造主元子空间,由于主元具有脸的形状,也称为特征脸  ,识别时将测试  图像投影到主元子空间上,得到一组投影系数,和各个已知人的人脸图像比较进行识别。Pentland等报告了相当好的结果,在 200个人的 3000幅图像中得到 95%的正确识别率,在FERET数据库上对 150幅正面人脸象只有一个误识别。但系统在进行特征脸方法之前需要作大量预处理工作如归一化等。
    在传统特征脸的基础上,研究者注意到特征值大的特征向量 (即特征脸 )并不一定是分类性能好的方向,据此发展了多种特征 (子空间 )选择方法,如Peng的双子空间方法、Weng的线性歧义分析方法、Belhumeur的FisherFace方法等。事实上,特征脸方法是一种显式主元分析人脸建模,一些线性自联想、线性压缩型BP网则为隐式的主元分析方法,它们都是把人脸表示为一些向量的加权和,这些向量是训练集叉积阵的主特征向量,Valentin对此作了详细讨论。总之,特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性。

基于KL 变换的特征人脸识别方法
基本原理:
    KL变换是图象压缩中的一种最优正交变换,人们将它用于统计特征提取,从而形成了子空间法模式识别的基础,若将KL变换用于人脸识别,则需假设人脸处于低维线性空间,且不同人脸具有可分性,由于高维图象空间KL变换后可得到一组新的正交基,因此可通过保留部分正交基,以生成低维人脸空间,而低维空间的基则是通过分析人脸训练样本集的统计特性来获得,KL变换的生成矩阵可以是训练样本集的总体散布矩阵,也可以是训练样本集的类间散布矩阵,即可采用同一人的数张图象的平均来进行训练,这样可在一定程度上消除光线等的干扰,且计算量也得到减少,而识别率不会下降。

4. 基于弹性模型的方法

    Lades等人针对畸变不变性的物体识别提出了动态链接模型 (DLA),将物体用稀疏图形来描述 (见下图),其顶点用局部能量谱的多尺度描述来标记,边则表示拓扑连接关系并用几何距离来标记,然后应用塑性图形匹配技术来寻找最近的已知图形。Wiscott等人在此基础上作了改进,用FERET图像库做实验,用 300幅人脸图像和另外 300幅图像作比较,准确率达到 97.3%。此方法的缺点是计算量非常巨大 。
    Nastar将人脸图像 (Ⅰ ) (x,y)建模为可变形的 3D网格表面 (x,y,I(x,y) ) (如下图所示 ),从而将人脸匹配问题转化为可变形曲面的弹性匹配问题。利用有限元分析的方法进行曲面变形,并根据变形的情况判断两张图片是否为同一个人。这种方法的特点在于将空间 (x,y)和灰度I(x,y)放在了一个 3D空间中同时考虑,实验表明识别结果明显优于特征脸方法。
    Lanitis等提出灵活表现模型方法,通过自动定位人脸的显著特征点将人脸编码为 83个模型参数,并利用辨别分析的方法进行基于形状信息的人脸识别。弹性图匹配技术是一种基于几何特征和对灰度分布信息进行小波纹理分析相结合的识别算法,由于该算法较好的利用了人脸的结构和灰度分布信息,而且还具有自动精确定位面部特征点的功能,因而具有良好的识别效果,适应性强识别率较高,该技术在FERET测试中若干指标名列前茅,其缺点是时间复杂度高,速度较慢,实现复杂。

5. 神经网络方法(Neural Networks)

人工神经网络是一种非线性动力学系统,具有良好的自组织、自适应能力。目前神经网络方法在人脸识别中的研究方兴未艾。Valentin提出一种方法,首先提取人脸的 50个主元,然后用自相关神经网络将它映射到 5维空间中,再用一个普通的多层感知器进行判别,对一些简单的测试图像效果较好;Intrator等提出了一种混合型神经网络来进行人脸识别,其中非监督神经网络用于特征提取,而监督神经网络用于分类。Lee等将人脸的特点用六条规则描述,然后根据这六条规则进行五官的定位,将五官之间的几何距离输入模糊神经网络进行识别,效果较一般的基于欧氏距离的方法有较大改善,Laurence等采用卷积神经网络方法进行人脸识别,由于卷积神经网络中集成了相邻像素之间的相关性知识,从而在一定程度上获得了对图像平移、旋转和局部变形的不变性,因此得到非常理想的识别结果,Lin等提出了基于概率决策的神经网络方法 (PDBNN),其主要思想是采用虚拟 (正反例 )样本进行强化和反强化学习,从而得到较为理想的概率估计结果,并采用模块化的网络结构 (OCON)加快网络的学习。这种方法在人脸检测、人脸定位和人脸识别的各个步骤上都得到了较好的应用,其它研究还有 :Dai等提出用Hopfield网络进行低分辨率人脸联想与识别,Gutta等提出将RBF与树型分类器结合起来进行人脸识别的混合分类器模型,Phillips等人将MatchingPursuit滤波器用于人脸识别,国内则采用统计学习理论中的支撑向量机进行人脸分类。
    神经网络方法在人脸识别上的应用比起前述几类方法来有一定的优势,因为对人脸识别的许多规律或规则进行显性的描述是相当困难的,而神经网络方法则可以通过学习的过程获得对这些规律和规则的隐性表达,它的适应性更强,一般也比较容易实现。因此人工神经网络识别速度快,但识别率低 。而神经网络方法通常需要将人脸作为一个一维向量输入,因此输入节点庞大,其识别重要的一个目标就是降维处理。
    PCA的算法描述:利用主元分析法 (即 Principle Component Analysis,简称 PCA)进行识别是由 Anderson和 Kohonen提出的。由于 PCA在将高维向量向低维向量转化时,使低维向量各分量的方差最大,且各分量互不相关,因此可以达到最优的特征抽取。

6. 其它方法:

除了以上几种方法,人脸识别还有其它若干思路和方法,包括一下一些:
1) 隐马尔可夫模型方法(Hidden Markov Model)
2) Gabor 小波变换+图形匹配
(1)精确抽取面部特征点以及基于Gabor引擎的匹配算法,具有较好的准确性,能够排除由于面部姿态、表情、发型、眼镜、照明环境等带来的变化。
(2)Gabor滤波器将Gaussian络函数限制为一个平面波的形状,并且在滤波器设计中有优先方位和频率的选择,表现为对线条边缘反应敏感。
(3)但该算法的识别速度很慢,只适合于录象资料的回放识别,对于现场的适应性很差。

3) 人脸等密度线分析匹配方法
(1) 多重模板匹配方法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。
(2) 线性判别分析方法(Linear Discriminant Analysis,LDA)
(3)本征脸法
    本征脸法将图像看做矩阵 ,计算本征值和对应的本征向量作为代数特征进行识别 ,具有无需提取眼嘴鼻等几何特征的优点 ,但在单样本时识别率不高 ,且在人脸模式数较大时计算量大 
(4) 特定人脸子空间(FSS)算法
该技术来源于但在本质上区别于传统的"特征脸"人脸识别方法。"特征脸"方法中所有人共有一个人脸子空间,而该方法则为每一个体人脸建立一个该个体对象所私有的人脸子空间,从而不但能够更好的描述不同个体人脸之间的差异性,而且最大可能地摈弃了对识别不利的类内差异性和噪声,因而比传统的"特征脸算法"具有更好的判别能力。另外,针对每个待识别个体只有单一训练样本的人脸识别问题,提出了一种基于单一样本生成多个训练样本的技术,从而使得需要多个训练样本的个体人脸子空间方法可以适用于单训练样本人脸识别问题。
(5)奇异值分解(singular value decomposition,简称SVD)
是一种有效的代数特征提取方法.由于奇异值特征在描述图像时是稳定的,且具有转置不变性、旋转不变性、位移不变性、镜像变换不变性等重要性质,因此奇异值特征可以作为图像的一种有效的代数特征描述。奇异值分解技术已经在图像数据压缩、信号处理和模式分析中得到了广泛应用.

 

7. 面像识别的主要商业系统

90年代中后期以来,一些商业性的面像识别系统开始进入市场。目前,主要商业系统包括:
● Visionics公司的FaceIt面像识别系统,该系统基于Rockefeller大学开发的局部特征分析(LFA)算法;
● Lau Tech.公司的面像识别/确认系统,采用MIT技术;
● Miros公司的Trueface及eTrue身份验证系统,其核心技术为神经网络;
● C-VIS公司的面像识别/确认系统;
● Banque-Tec.公司的身份验证系统;
● Visage Gallery’s 身份认证系统,基于MIT媒体实验室的Eigenface技术;
● Plettac Electronic’s FaceVACS出入控制系统;
● 台湾的BioID系统,它基于人脸、唇动和语音三者信息融合的Biometrics系统。

其中,FaceIt系统是最具有代表性的商业产品,目前已在很多地方得到了应用。去年,它在英国用于被称为“Mandrake”的反罪犯系统中,该系统在144个监控摄像机采集的视频序列中搜索已知的罪犯或者嫌疑犯,如发现可能的罪犯,系统将通知中心控制室的警员。
笔者曾使用过FaceIt系统,并对其进行了各项指标的评测。结果表明,该系统在控制光照、准正面(3坐标轴上的旋转不超过15度)、无饰物的情况下具有较好的识别性能。但在实用过程中也发现,只有训练集人脸图像的采集条件与测试集人脸图像的采集条件基本一致时才能具有良好的识别性能,否则,其性能将急剧下降,尤其光照变化、姿态变化、黑框眼镜、帽子、夸张的表情、胡须和长发等对其性能的影响更大。

面像识别系统的测试
    基于对面像识别技术在军事安全等领域重要性的考虑,美国国防部的ARPA资助建立了一个对现有面像识别技术进行评测的程序,并分别于1994年8月、1995年3月和1996年9月(截至1997年3月)组织了三次面像识别和人脸确认的性能评测,其目的是要展示面像识别研究的最新进展和最高学术水平,同时发现现有面像识别技术所面临的主要问题,为以后的研究提供方向性指南。尽管该测试只对美国研究机构开放,但它在事实上成为了该领域的公认测试标准,其测试结果已被认为反映了面像识别研究的最高学术水平。
    根据2000年公开发表的FERET’97测试报告,美国南加州大学(USC)、马里兰大学(UMD)、麻省理工学院(MIT)等研究机构的面像识别技术具有最好的识别性能。在训练集和测试集摄像条件相似的200人的识别测试中,几个系统都产生了接近100%的识别率。值得一提的是,即使是最简单的相关匹配算法也具有很高的识别性能。在更大对象集的FERET测试中(人数大于等于1166人),在同一摄像条件下采集的正面图像识别中,最高首选识别率为95%;而对用不同的摄像机和不同的光照条件采集的测试图像,最高首选识别率骤降为82%;对一年后采集的图像测试,最大的准确率仅仅接近51%。
    

该测试结果表明,目前的面像识别算法对于不同的摄像机、不同的光照条件和年龄变化的适应能力非常差,理应得到研究者的足够重视。而且值得注意的是,该测试中所用的人脸图像均为比较标准的正面人脸图像,姿态变化非常小,也没有夸张的表情和饰物,以及没有提及面部毛发改变的情况。所以,我们认为,除了FERET测试所揭示的上述面像识别研究需要面对的问题之外,还需要考虑诸如姿态、饰物(眼镜、帽子等)、面部表情、面部毛发等可变因素对面像识别性能的影响。这些因素也是开发实用的面像识别产品时必然会遇到的最关键的技术问题。
为进一步测试商业面像识别系统的性能,并揭示2000年前后面像识别技术的最新进展,美国国防部的反毒品技术开发计划办公室于去年5月和6月对美国的主要商业面像识别系统进行了评测,称为FRVT’2000(Face Recognition Vender Test)评测。该计划邀请了美国所有面像识别系统厂商参加,共24家,但只有8家响应,最终有5家公司参加了评测,而只有3家的系统在规定时间内完成了全部对比实验。可以认为,这3家公司的产品是目前最具竞争力的商业识别系统,它们分别是FaceIt系统、Lau Tech.公司的系统和C-VIS公司的系统。FRVT’2000评估了这些系统对图像压缩、用户-摄像机距离、表情、光照、录制设备、姿态、分辨率和时间间隔等影响因素的识别性能。结果表明,面像识别系统的性能与1997年的测试相比有了一定的进步,但其识别性能对各种条件,如光照、老化、距离、姿态等,仍然离人们的期望值较远。

国内:

中科院-上海银晨

近年来,国内学者在对特征脸技术进行认真研究的基础上,尝试了基于特征脸特征提取方法和各种后端分类器相结合的方法,并提出了各种各样的改进版本或扩展算法,主要的研究内容包括线性/非线性判别分析(LDA/KDA)、Bayesian概率模型、支持矢量机(SVM)、人工神经网络(NN)以及类内和类间双子空间(inter/intra-class dual subspace)分析方法等等。

 近年来,中科院计算所在对特征脸技术进行认真研究的基础上,尝试了基于特征脸特征提取方法和各种后端分类器相结合的方法,并提出了各种各样的改进版本或扩展算法,主要的研究内容包括线性/非线性判别分析(LDA/KDA)、Bayesian概率模型、支持矢量机(SVM)、人工神经网络(NN)以及类内和类间双子空间(inter/intra-class dual subspace)分析方法等等。

推荐文章

人工智能(AI)问世之初曾经狂妄自大、令人失望,它如何突然变成当今最热门的技术领域?人工智能(AI)问世之初曾经狂妄自大、令人失望,它如何突然变成当今最热门的技术领域?这个词语首次出现在1956年的一份研究计划书中。该计划书写道:“只要精心挑选一群科学家,让他们一起研究一个夏天,就可以取得重大进展,使机器能够解决目前只有人类才能解决的那些问题。”至少可以说,这种看法过于乐观。尽管偶有进步,但AI在人们心目中成为了言过其实的代名词,以至于研究人员基本上避免使用这个词语,宁愿用“专家系统”或者“神经网络”代替。“AI”的平反和当前的热潮可追溯到2012年的ImageNet Challenge在线竞赛。ImageNet是一个在线数据库,包含数百万张图片,全部由人工标记。每年一度的ImageNet Challenge竞赛旨在鼓励该领域的研究人员比拼和衡量他们在计算机自动识别和标记图像方面的进展。他们的系统首先使用一组被正确标记的图像进行训练,然后接受挑战,标记之前从未见过的测试图像。在随后的研讨会上,获胜者分享和讨论他们的技术。杰夫里·辛顿(Geoffery Hinton)2010年,获胜的那个系统标记图像的准确率为72%(人类平均为95%)。2012年,多伦多大学教授杰夫·辛顿(Geoffery Hinton)领导的一支团队凭借一项名为“深度学习”的新技术大幅提高了准确率,达到85%。后来在2015年的ImageNet Challenge竞赛中,这项技术使准确率进一步提升至96%,首次超越人类。2012年的比赛结果被恰如其分地视为一次突破,但蒙特利尔大学计算机科学家约书亚·本吉奥(Yoshua Bengio)说,这依赖于“将之前已有的技术结合起来”。约书亚·本吉奥(Yoshua Bengio)本吉奥和辛顿等人被视为深度学习的先驱。从本质上来讲,这项技术通过强大的计算能力和大量的训练数据,复兴了AI问世之初的一个旧想法,也就是所谓的人工神经网络(ANN),其灵感来自于大脑神经元网络。在生物大脑中,每个神经元被其他神经元发来的信号触发,其自身发出的信号又会触发其他神经元。一个简单的ANN包含一个向网络输入数据的神经元输入层,和一个输出结果的输出层,也许还有两三个处理信息的中间隐藏层(实际上,ANN完全由软件模拟而成)。网络中的每个神经元都有一组“权值”和一个控制其输出启动的“激活功能”。神经网络的训练涉及到调整神经元的权值,使特定的输入产生我们需要的输出。上世纪90年代初,ANN开始取得某些有用的结果,比如识别手写数字。但如果让它们去做更加复杂的任务,就会遇到麻烦。在过去十年里,新技术和对激活功能的一个简单调整使训练深度网络成为可能。同时,互联网的崛起使无数的文档、图片和视频可用于训练目的。这一切都需要强大的数据处理能力。2009年前后,几支AI研究团队意识到,专门用来在PC和游戏机上产生精细图像的图形处理单元(GPU)能够提供强大的数据处理能力,也非常适合运行深度学习算法。斯坦福大学的一支AI研究团队发现,GPU可以使其深度学习系统的运行速度加快近百倍。该团队由吴恩达领导,他后来又曾加入谷歌和百度。吴恩达突然之间,训练一个四层神经网络只需要不到一天的时间,而以前需要好几周。GPU制造商英伟达(NVIDIA)的老板黄仁勋说,用来为玩家创造虚拟世界的芯片,也能用来帮助计算机通过深度学习技术理解现实世界。ImageNet Challenge的比赛结果证明深度学习大有可为。突然之间,人们开始给予关注,不只是在AI圈子里,还有整个技术界。此后,深度学习系统变得越来越强大:深度达到20或30层的网络不再罕见,微软(Microsoft)的研究人员甚至打造了一个152层的网络。层数更多的网络具有更强的抽象能力,能够产生更好的结果。事实证明,这些网络善于解决非常广泛的问题。“人们之所以关注这个领域,是因为深度学习技术具有广泛的用途,”谷歌机器智能研究主管、负责谷歌搜索引擎的约翰·詹南德雷亚(John Giannandrea)说。谷歌正在利用深度学习来提高其网络搜索结果的质量,理解用户向智能手机发出的语音命令,帮助人们搜索包含特定影像的照片,自动生成电子邮件智能回复,改善网页翻译服务,帮助自动驾驶汽车识别周围环境。学习如何学习深度学习分很多种,其中使用最广泛的一种是“监督学习”,该技术利用标记样本来训练系统。例如,就垃圾邮件过滤而言,这项技术可能会建立一个庞大的样本信息数据库,每条样本信息被标记为“垃圾邮件”或者“非垃圾邮件”。深度学习系统可以使用这种数据库进行训练,通过反复研究样本和调整神经网络内部的权值,改善垃圾邮件的识别准确率。这种方法的优点在于,不需要人类专家制定一套规则,也不需要程序员编写代码执行规则。系统能够直接从标记数据中学习。使用标记数据进行训练的系统被用来分类图像,识别语音,发现信用卡欺诈交易,识别垃圾邮件和恶意软件,定向投放广告。对于这些应用,正确的答案已经存在于先前的大量样本中。当你上传照片时,Facebook可以识别和标记你的朋友和家人。近期,该公司发布了一个系统,可以为失明用户描述照片的内容(“两个人,笑,太阳镜,户外,水”)。吴恩达说,监督学习能够用于各种各样的数据。通过采用这项技术,现有的金融服务、计算机安全和营销公司可以贴上AI公司的新标签。另一种技术是非监督学习,同样是使用大量样本来训练系统,但这些样本没有经过标记。系统学习识别特征和聚类相似样本,发现数据中隐藏的集合、联系或模式。非监督学习可以用来搜寻没有具体形象的东西,比如监督网络流量模式,探测可能与网络攻击有关的异常现象,或者检查大量的保险索赔,揭露新的欺诈手法。再举一个著名的例子。2011年在谷歌工作时,吴恩达领导了一个名为Google Brain的项目,要求一个庞大的无监督学习系统寻找数千个非标记YouTube视频中的共有图案。一天,吴恩达的一位博士生给他带来了一个惊喜。“我记得他把我叫到他的电脑前,对我说‘瞧这个,’”吴恩达回忆道,屏幕上有一张毛茸茸的脸,那是从数千个样本中提取的图案。系统发现了猫。强化学习介于监督和非监督学习之间,只使用偶尔的奖励反馈来训练神经网络与环境互动。从本质上讲,训练涉及到调整网络的权值,寻找一个持续产生更高奖励的策略。DeepMind是这方面的行家。2015年2月,该公司在《自然》(Nature)杂志上发表了一篇文章,描述了一种强化学习系统,它能够学会玩49款雅达利经典电子游戏,只使用屏幕像素和游戏得分作为输入数据,其输出数据与虚拟控制器连接。该系统从头开始学习玩这些游戏,在29款游戏中都达到或超过了人类的水平。让系统玩游戏DeepMind的德米斯·哈萨比斯(Demis Hassabis)说,对AI研究而言,电子游戏是理想的训练场,因为“它们就像现实世界的缩影,但更加明晰,更有约束”。德米斯·哈萨比斯(Demis Hassabis)游戏引擎也能非常轻松地产生大量的训练数据。哈萨比斯曾从事电子游戏行业,后来获得认知神经科学博士学位并创建DeepMind。这家公司现在是谷歌旗下的AI研究部门,办公地点位于伦敦国王十字车站附近。2016年3月,DeepMind研发的AlphaGo系统击败了围棋顶尖高手李世石,在五局比赛中取得4:1的压倒性胜利。AlphaGo是强化学习系统,具有某些不同寻常的特征。它由几个相互连接的模块组成,包括两个深度神经网络,分别擅长不同的领域,就像人脑的左右半球。其中一个网络接受的训练是分析数百万盘围棋棋局,从而在实战中给出赢面最高的几种下一步落子选择,然后交由另一个网络进行评估,后者采用随机取样的技术。因此,AlphaGo同时结合了仿生技术和非仿生技术。关于哪种方法更好的问题,AI研究人员争论了几十年,但AlphaGo双管齐下。“这是个混合系统,因为我们相信,我们将不止需要深度学习来解决智力问题,”哈萨比斯说。哈萨比斯和其他研究人员已经在着手下一步,也就是迁移学习。这可以使强化学习系统把先前已获得的知识作为基础,而不必每次都从头训练。哈萨比斯指出,人类可以毫不费力地做到这一点。詹南德雷亚回忆说,他四岁的女儿知道大小轮脚踏车也是一种自行车,即使她以前从未见过。“计算机做不到这一点,”他说。被Salesforce收购的AI初创公司MetaMind致力于另一种相关的方法,名为多任务学习,也就是同一个神经网络架构被用来解决几种不同的问题,解决其中一种问题的经验使它能够更好地解决另一种问题。和DeepMind一样,MetaMind也在探索模块化架构,其中一种架构名为“动态记忆网络”,能够获取一系列陈述,然后回答有关这些陈述的问题,推断出它们之间的逻辑联系(Kermit是青蛙,青蛙是绿色的,所以Kermit是绿色的)。MetaMind还把自然语言和图像识别网络整合进同一个系统,能够回答有关图像的问题(“这辆车是什么颜色的?”)。其技术可以用于面向Salesforce客户的自动化客户服务机器人或者呼叫中心。以前,原本形势大好的AI新技术往往会迅速失势。但深度学习不同。“它确实很有用,”MetaMind的理查德·索赫尔(Richard Socher)说。人们每天都在使用它,但并没有意识到它的存在。理查德·索赫尔(Richard Socher)哈萨比斯和索赫尔等人的长期目标是打造“通用人工智能”(AGI),也就是能够处理多种任务的系统,而不是为每个问题都单独创造一个新的AI系统。索赫尔说,AI研究多年来聚焦于解决具体狭隘的问题,但现在研究人员正在“以新的方式拼凑更先进的乐高积木”。哪怕是最乐观的人也认为,还得再需要十年才能实现具备人类水平的AGI。但哈萨比斯说:“我们觉得,我们知道实现AGI需要哪些关键的东西。”AI已经在发挥实际作用,并且将很快变得越来越有用。谷歌的Smart Reply系统(利用两个神经网络自动生成电子邮件回复)在短短四个月的时间内,就从深度学习研究项目变成了现实产品(不过刚开始的时候不得不阻止它对几乎每封邮件都生成“我爱你”的回复)。“你在学术期刊上发表论文,毫不夸张地说,随后的一个月就会有公司使用那个系统,”索赫尔说。来自大大小小的AI公司的学术论文持续不断。AI研究人员被允许在同行评审期刊上发表他们的研究结果,即使是在转化投产之后也可以。他们中的很多人一边为企业工作,一边发表学术文章。“如果你不让他们发表,他们就不会为你工作,”安德森-霍洛维茨基金(Andreessen Horowitz)的克里斯·迪克森(Chris Dixon)说。谷歌、Facebook、微软、IBM、亚马逊、百度和其他公司提供了免费的开源深度学习软件。一个原因是这些公司的研究人员希望公布他们正在做的事情,这有助于招募人才。另一个原因在于,大型互联网公司能够承担免费提供AI软件的后果,因为他们可以从其他地方获得巨大好处:获取大量用户数据用于训练目的。投资基金Bloomberg Beta的席翁·齐利斯(Shivon Zilis)说,这使他们在某些领域具有优势。而初创公司则想办法进入特定市场。例如,无人机初创公司利用模拟数据来了解如何在拥挤环境中飞行。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。