人工智能正在掀起“教育革命”

 人工智能正在教育界掀起层层浪花。

 

  这种趋势,在日前由北京师范大学和科大讯飞共同主办的“人工智能与教育大数据峰会2019”上,体现尤为明显。

 

  “以人工智能为代表的新一代信息技术的快速发展,将会对传统的教育理念、教育体系和教学模式产生革命性影响,从而进一步释放教育在推动人类社会发展过程中的巨大潜力。”教育部科技司司长雷朝滋在出席会议时表示。

 

  正在掀起教育的一场革命

 

  “‘人工智能+教育’正在掀起教育的一场革命。它改变着教育的生态、教育的环境、教育的方式、教育管理的模式、师生关系等等。”中国教育学会名誉会长、北京师范大学资深教授顾明远也给出类似判断。

 

  记者了解到,目前图像识别、语音识别、人机交互等人工智能技术都已在教育领域开展应用。

 

  “通过图像识别技术,人工智能可以将教师从繁重的批改作业和阅卷工作中解放出来;语音识别和语义分析技术,可以辅助教师进行英语口试测评,也可以纠正、改进学生的英语发音;而人机交互技术,可以协助教师为学生在线答疑解惑。”科大讯飞执行总裁吴晓如介绍。

 

  在吴晓如看来,个性化教育和因材施教一直都是最美好的教育理想。但由于老师教授的学生数量多、教学任务繁重,老师很难做到深入关心每个孩子的成长。面对这样的问题,人工智能与大数据的结合将可以发挥作用。

 

  “人工智能将教学变为大数据分析以及人工智能辅助的以学生为中心的个性化学习,为每个学生提供个性化、定制化的学习内容、方法,从而激发学生深层次的学习欲望。”吴晓如说。

 

  国内一些学校已经开始“人工智能+教育”的尝试。

 

  例如,在精准教学方面,借助大数据与人工智能技术,合肥、福州等一些中学开展的高效讲评课,将原本需要45分钟的习题讲解压缩至15分钟讲解共性问题,其余时间用于分组讨论或拓展学习。同时,还能够实现对学生的个性化分析、以学定教、提升学习的效率与质量。

 

  应尊重学生的个人隐私信息

 

  近年来,一系列推进人工智能教育应用的战略与行动规划陆续出台。

 

  今年2月发布的《中国教育现代化2035》中,“加快信息化时代教育变革”被列入推进教育现代化的十大战略任务,明确了推进智能教育应用的部署。

 

  “我们正在组织研制《中国智能教育发展方案》,以构建智能时代下的教育新生态为目标,全面创新教育模式,推动教育供给侧改革,转换教育发展的动力结构,促进人的全面发展,支撑引领教育现代化。”雷朝滋透露。

 

  谈到人工智能在教育中扮演的角色,吴晓如认为,未来很长一段时间内,人工智能在教育领域的应用会是一种辅助性手段,它会是学生和老师之间的一个“助手”。

 

  “‘人工智能+教育’正在使教育发生重大的、可以说是革命性的变革,但是教育的本质不会变。教育是传承文化、创造知识、培养人才的本质不会变,立德树人的根本目的不会变。”顾明远强调。

 

  人工智能在教育领域应用所涉及的伦理问题,也是此次会议热议话题之一。雷朝滋表示,智能时代“教育治理体系将面临社会伦理、数据安全的新挑战”。

 

  “现在所谓的教育大数据更多是考试数据、练习数据、测试数据。基于这些数据开发出来的人工智能系统,会不会给学生带来新的负担?会不会增加教育新的不公平?”首都师范大学教授樊磊问道。

 

  樊磊认为,智能教育时代,还应该特别加强学生个人隐私信息的保护,而不能随随便便追踪学生的个体行为数据。“对于正在成长中的学生,这种事情一定要谨慎再谨慎。”樊磊说。

推荐文章

 电商环境中,商品的图片展示比文字展示对顾客购买有更直观的吸引力,尤其在购买衣服时。阿里巴巴的百万卖家各个都是ps大师,想必大家都领教过^_^。传统的方法需要富有经验的设计师交互式的抠图,效率低下,阿里巴巴的视觉研究团队希望使用技术手段帮助卖家一键完成非幕布的自然场景人物抠图。发表于ACM MM2018会议的论文《Semantic Human Matting》,揭示了阿里巴巴在这方面的数据库和算法设计。论文称,这是第一个能够完全自动化精细抠图的工作。(其实前几天52CV君介绍了一篇SIGGRAPH2018的论文语义软分割也是类似算法,而且开源了)下图展示了抠图的应用,计算图像的alpha mate,可以方便将其与其他背景图像合成。数学上表达这个合成的过程很简单:F是前景即人物图像,B是背景图像。数据库制作HUMAN MATTING DATASET要解决这个问题,首先需要有大规模数据库,学术界研究Matting的数据库往往都很小,难以训练出较满意的结果。这一步,某宝卖家立大功了!为科研做出了杰出贡献!论文从某电商平台(嗯,论文中没明说)收集了188K幅由卖家手动抠出来的含有alpha mate的图像,花了1200个小时(50个24小时)从中小心翼翼选择了35311幅高质量含人物的图像,并结合DIM数据集(含有202幅前景图,与自然图像合成20200幅图像),组成了含有52511幅图像的超大规模的Human Matting Dataset。human matting dataset数据源组成:human matting dataset与其他同类数据库的比较:部分数据库中图像示例:网络架构该文使用结合语义分割的端到端的深度学习神经网络预测alpha mate。网络结构如下:该网络(SHM)主要分为三大部分,T-Net,M-Net,Fusion Module。T-Net为语义分割模块,使用PSPNet,输入是原始图像,其输出结果是含有前景、背景、未知区域三种类别图像的三色图(trimap)。语义分割是一种粗略的前景提取。注:在传统Matting的场景中,三色图trimap是由用户手动标注的,可以理解为对图像“完全正确的粗略分割”。M-Net是细节提取和alpha mate生成网络,使用类VGG16的网络结构,其输入时原始图像和T-Net输出的三色图。Fusion Module是对T-Net输出的三色图中前景和M-Net输出的alpha mate的加权融合模块,目的是结合语义分割和细节提取进一步提精alpha mate。网络训练的时候,T-Net和M-Net事先单独预训练,然后整个大网络端到端训练。实验结果因为以往算法都需要人工交互得到的三色图trimap来比较matting的性能,而本文算法是完全自动的。为便于比较,作者设计了两个实验。将alpha mate与groundtrut相比较的具体评价标准不再赘述,感兴趣的读者请阅读原论文参考文献21。1.将T-Net生成的三色图作为传统算法的三色图输入,比较算法生成的alpha mate质量。结果如下:该论文的全自动的SHM算法取得了明显的优势!2.将手动标注的三色图作为传统算法的三色图输入,比较算法生成的alpha mate质量。结果如下:该论文的全自动的SHM算法尽管不是最好的结果,但已经取得了与有人工交互参与的最好结果相匹敌的性能。下面是算法在测试图像上生成的结果示例图像:作者然后进一步研究了算法中各部分对性能的影响,发现各部分均有贡献,其中“end-to-end”的训练获得最大的算法性能增益。算法各部分输出结果可视化:a为原图,b为T-Net生成的三色图,c为M-net输出的alpha mate值,d为最终融合模块预测的结果。下面是SHM算法在实际自然图像中抠像并合成新背景的图像:52CV君认为自然场景的人物抠图还是蛮有意义的,用在移动视频直播换背景等将大有可为。这篇论文挺有价值,但更有价值的是某宝卖家给阿里贡献的这个数据集!希望官方能够提供下载就好了。工程主页:https://arxiv.org/abs/1809.01354v1

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。