数据与智能融合,新赛道的投资机会如何判断?


大数据领域经历了2013年开始的疯狂增长,2016年的断崖式下降,以及2018年以来的迭代复苏,单一的数据技术逐步与人工智能技术结合,应用场景从营销获客、金融风控等为主,转为与城市管理、工业制造等领域越来越深度的结合。大数据产业已进入2.0时代。新时代下,数据与智能融合,新赛道的投资机会如何判断?

中国计算机学会(CCF)大数据专家委员会,每年年底都会发布下一年的大数据发展十大趋势预测。回顾从2013年到2019年的第一大预测,可以发现有意思的发展轨迹:数据的资源化(2013)、大数据从“概念”走向“价值”(2014)、大数据分析成为数据价值化的热点(2015)、可视化推动大数据平民化(2016)、机器学习继续成智能分析核心技术(2017)、机器学习继续成大数据智能分析的核心技术(2018)、数据科学与人工智能的结合越来越紧密(2019)。

从大数据的概念兴起到寻找和挖掘大数据的价值,再到大数据的平民化以及大数据与人工智能的紧密结合,这是一个螺旋上升的过程。在这个过程中,整个大数据产业越来越认同:数据本身没有价值,经过清洗之后才能形成信息,信息只有经过整理才会形成知识,知识只有应用了才会形成智慧,智慧经过收集又变成数据,这是一个完整的循环。

数据经过迭代和循环之后,基于场景化的应用才能创造价值,这已经成为产业共识。进入2018年,我们正处于大数据产业第一轮上升周期的最后阶段——智能应用阶段。现在,各种各样的IT公司、AI公司、大数据公司甚至是SI系统集成商等都在进入所谓“数据智能”领域,造成竞争非常激烈,使得很多从业者在审视方向和战略路径的时候产生了焦虑。其他赛道的争相融合,也使得数据智能赛道中的选手排名有很大的不确定性,再加上这些选手在一级市场高估值的现象,使得投资人在做判断的时候比较纠结。

在2018年12月举办的钛资本“新一代企业级科技投资人投研社”在线研讨会第八期上,达晨财智业务合伙人窦勇分享了对数据智能产业的思考。窦勇在达晨财智负责大数据业务,同时也是中国首席数据官联盟专家组成员,其投资案例包括数联铭品、数据堂、昆仑数据、美林数据、蝎子网络、中奥科技、索为高科、锐思环保等。

走进数据2.0时代

大数据,通俗的讲就是一台机器干不完的事情,利用多台机器来完成。大数据能够快速发展的根本原因无非两个,一个是计算性能的提升,第二个存储成本的降低。

对标国外来看,整个20世纪90年代之前,因为信息化尚未完成,数据量比较少。进入21世纪,移动互联网的兴起使得数据量飙升。2005年,雅虎解决网页搜索问题的时候,提出来两个概念——高性能计算、分布式存储,对行业有着很深远的意义。资本市场更关注的是2009年Splank的上市,来自资本市场的刺激让整个市场为之动容。而2014年Plantir的估值达到200亿美金,更是让国内的整个投资界为之疯狂。

国内来看,从2013年到2017年12月9号,属于数据1.0时代,是进行认知、培训、泡沫、创新的过程。为什么以2017年12月9号为分界点呢?因为在这一天梅宏院士向中央递交了一个报告,从此整个行业进入了数据2.0时代,也就是数据场景化应用、深度融合的时代。

云计算、大数据、人工智能这三者之间你中有我、我中有你、互利共存,一起促进了整个数据智能产业的发展。云计算的出现带动了大数据的热潮,后来人工智能变得更热了,是不是大数据就变得不重要了?其实大数据已经融入到了整个人工智能产业中。

回顾数据1.0时代的投资逻辑

数据1.0时代是一个体现数据差异化的时代,这个时代从消费领域的大数据开始,经历了机器大数据以及后来的工业大数据。

机器大数据萌芽阶段是从2013年到2015年,从2015年进入成长阶段,新三板的介入助推了这个进程。在2016年之前,工业大数据没有得到太多的关注,整个产业现在也还处于发展的初期,这是因为工业领域的信息化尚未完成,有很多的不确定性因素,也存在大量机会。数据1.0时代,从产业角度来看,数据格式从结构化、半结构化、异构化等多样化的融合使得数据源变得更加丰富;而处理数据的手段,无论是基于Hadoop还是Spark的计算方式,都使得整个产业不断地迭代和演进。

数据1.0时代的创业者无非有三类:第一类是原来的传统IT和系统集成商,这一部分群体的出现主要是因为在2015年整个数据行业处于高速发展中,在一级市场给出高估值的情况下,大部分IT系统集成厂商摇身一变成了所谓的数据厂商,他们胜在更贴近用户,但可能对于行业的认知不足,不太关注研发投入;第二类是拥有稀缺数据资源的厂商,他们凭着独有的数据资源能够带来独有的视角和商业价值;第三类是具备技术的创业团队,他们大部分来自于传统的企业IT公司,包括微软、IBM、Oracle等大型厂商,对于技术的应用比较强。在过去五年当中,这三者各有一席之地,但是最终在进入数据2.0时代的时候逐渐融合,都在往场景落地上走,也就是所谓的数据融合。

数据1.0时代从资本的角度来看,2014年Palantir获得200亿美金的估值,加快了国内整个行业泡沫的形成。新三板2015年的推出导致整个行业的虚高。2016年6月1号,《网络安全法》的公布又矫枉过正。特别是对个人隐私数据的极端关注,导致大量行业从业者退出。

而因为泡沫的存在,造成了大量黑产数据的形成,产业里面形成了大量的灰色地带。整个行业陷入极其消沉期是在2017年,由于对整个行业的未来方向都看不清楚,很多人到处尝试,数据行业投入的壁垒也在逐渐加大。

2017年12月9日的“实施国家大数据战略”,为整个数据行业带来了一个新的方向。中国政府是数据最大的拥有者,也是数据最大的需求者,但本身没有技术能力使用数据。因此,如果没有政策的指引,地×××府也不敢投入。所以,2017年12月9日之后,整个行业迎来了快速发展。

对于数据应用来说,什么样的行业领域才能体现数据价值?一是这个行业具备一定的信息化程度;二是具备购买数据服务的能力;三是具有数据安全或安全数据,数据安全是指数据资产本身从流通到应用过程中的安全,安全数据是指数据来源的合法性,对这个问题必须慎之又慎。

对大数据企业进行估值也比较挑战,传统的估值模型往往在现实中不成立。数据企业具有一个显著的特点:除了轻资产外,其它的什么都没有。对于这类型资产怎么进行估值?投资机构在最开始做数据企业估值的时候肯定是“两眼一抹黑”,不过可以基于三个方面的目的进行判断:第一,投资机构确实想进入这个市场,所以在有标的物的估值方面可能会采取折中的办法;第二,投资以退出为目的,估值取决于需要多长时间能够收回本金;第三,数据企业的产品应用场景在哪里,用户的反馈是什么。

还有一些比较实用的小技巧:第一,数据企业到底能解决什么样的问题,是否具备可复制性,持续能力在哪里;第二,团队的构成是否互补,数据企业往往都是科学家型,在面对市场时有哪些短板,如果后期补齐了短板,成长的能力又在哪里;第三,创业早期可能对财务指标不会太在意,但是对于资金的使用去向要特别关注。

数据2.0时代:场景逻辑,巨头形成

数据2.0时代到底是什么样的呢?

从产业内部来看:第一,普适性的教育已经初步完成,分工明确、需求也十分确定,给整个数据产业带来了一个快速发展的强周期,具备了天时、地利和人和;第二,随着金融资本市场进一步的回落,对于数据企业的认知更加回归本质,资本市场给整个产业带来的泡沫逐渐消亡,原来单纯靠PPT演讲就能融资的情况已经基本不存在了。

从产业外部来看:第一,资本市场回归理性,泡沫空间变小。都知道2018年难熬,大家的口号都是“活下去”;第二,外部政策环境持续利好,无论是科创板的即将开板,还是国家把数据行业定位为新经济的重要支柱,都给数据产业的良性发展提供了一个良好的外部环境。

天时、地利、人和都具备了,可以预测,大数据企业在未来的一段时间将形成以下三个良性发展:

第一:场景落地的效应更加明确。到底是针对什么样的场景解决什么样的问题,这种场景是否具备可复制性,持续效应在哪里,如何随着时间的推移得到进一步的应用;

第二,数据龙头企业形成。资本寒冬后留下来的是良品,大数据企业会趋于一种寡头效应。凭借着资本市场以及行业里大量的沉淀,将形成对整个产业的新认知。现在二级市场上虽然很多自称大数据企业,其实真正的大数据企业可能寥寥无几,可以期待之后真正的数据巨头形成;

第三个是技术更新加快。现在无论是从硬件还是软件,整个产业层面对于数据行业的支撑在不断的加快演进与迭变。无论是从计算性能还是存储效率来看,计算效率的极大提升将驱动产业进一步良性的发展。

回归到本质来看,数据2.0时代的“场景落地”到底指的是什么样的场景?这个场景一定是在信息化基本完成的行业里,并且行业具有较强的支付能力。创业公司也不再是项目型,而是以产品的形式带动整个产业的发展。

工业互联网:数据2.0的典型场景

在场景落地方面,工业互联网是一个典型的细分赛道。2017年12月9号之后,最让整个产业界兴奋的事件,就是工业富联上市。工业互联网赛道在当前的寒冬期仍相当红火,主要推手有两个:一个是工信部信通院在推广工业互联网板块,另一个是国家层面的“中国制造2025”。这两个推手促成了工业互联网赛道的趋之若鹜。

但目前我国的工业尚处于3.0阶段,难以跟以高科技著称的美国工业互联网、以机械著称的德国工业互联网对标,所以国家提出了“中国制造2025”。虽然这只是纲领性的文件,但是对整个产业界、投资界以及工业互联网创业圈的振动却不小。

从“中国制造2025”的宏伟目标看,其中的产业机会达上万亿。但整个赛道从投资者的角度来看,创业者并不多。因为既懂IT又懂工业的人少之又少,整个工业互联网赛道看似有巨大的商业机会,但从基本面来看还处于一个比较落后的阶段。

投资人应该怎么看工业互联网?工业互联网可以分两部分:第一,透明工厂,就是在工厂内部围绕产品打通原料、生产流、信息流、资金流,实现设备智能化、流程信息化、过程网络化;第二,以前当产品离开工厂后就很难再与工厂发生联系,而从工业互联角度考虑就要以用户为中心,实现需求个性化、体验场景化、用户生态化。围绕这两部分,工业互联网的体系,从产品全周期管理开始到最终用户互联互通,形成了一个生态。生态当中流通的是数据,以数据的方式驱动整个产业的布局。

按三个层级划分,工业互联网领域可以布局的赛道具体有以下这些:

第一,边缘层。围绕工业互联网的数据汇聚基础,值得布局的赛道有工业传感器、5G、芯片产业。实际上,传感器领域还是被国外厂商垄断,5G核心芯片也是类似情况。但是,随着带宽的提高,采集数据的成本降低了。物联网领域,形成了M2P(Machine-to-Person机器与人连接)和M2M(Machine-to-Machine机器与机器连接),数据的流通得到了进一步的加强。当然芯片不是靠钱能堆出来,但是基于工业互联网的单片机相对比较容易,投入资金也能促成一些基于行业场景化、定制化的芯片,所以这个领域还是有一定的机会。

第二,平台层。可以关注几个方向:首先是行业内的应用平台,这是因为没有行业应用具体特征的数据平台会比较空泛,而解决工业领域各种细分需求的平台需要花费更多时间打造;其次,从技术逻辑角度来看,基于工业产品的时空数据库并没有较好的解决方案,相应可以布局专门针对工业领域数据特点的解决方案。

第三,应用层。因为这个行业相对比较早期,哪怕相对比较大型的企业如树根互联、网智天元、徐工信息等,可能在某一个细分领域凭借原来的行业经验积累了丰富的应用,或者凭借母公司带来相对垄断的资源,但也还都是项目制的方式运营,完全以标准化产品提供服务的还比较少。应用层的创业和投资机会,可以从两个方面考察:第一,信息化是否提前完成;第二,有资金和技改经费。按照这两个标准,能源、电力、高端装备制造业等都是比较好的选择。

整体来说,在工业互联网板块三个层级里,哪一个层级会先有选手跑出来呢?从用户的角度来看,可能是平台层。虽然没有边缘层这些企业解决数据采集、数据治理、数据清洗的问题,平台层无从谈起。但是边缘层往往吃力不讨好。大的企业客户往往急于看到效果,对于平台层的需求往往超出对于边缘层的需求。应用层是不是没有机会呢?也不是。但是在工业互联网领域,用户在意的是究竟能不能解决问题。从行业来看,一定是在能源、电力、高端装备制造业等板块,会较早的跑出一些选手。

大数据领域经历了2013年开始的疯狂增长,2016年的断崖式下降,以及2018年以来的迭代复苏,单一的数据技术逐步与人工智能技术结合,应用场景从营销获客、金融风控等为主,转为与城市管理、工业制造等领域越来越深度的结合。大数据产业正进入到2.0时代。新时代下大数据与人工智能的融合,已然成为各行各业技术驱动、产业升级的重要支撑。具备数据智能的能力、以场景应用为中心的项目,将成为大数据领域的投资主流。

推荐文章

目 录摘 要 ........................................................7一、 简介 ....................................................... 9(一) 《国家人工智能研究和发展战略计划》的目的 ............. 9(二) 预期结果 ............................................ 11(三) 利用人工智能推进国家优先事项的愿景 .................. 121、 促进经济发展 ....................................... 122、 改善教育机会和生活质量 ............................. 133、 增强国家和国土安全 ................................. 14(四) 人工智能的现状 ...................................... 14二、 研发战略 .................................................. 18(一) 战略一:对人工智能研究进行长期投资 .................. 211、 提升基于数据发现知识的能力 ......................... 212、 增强人工智能系统的感知能力 ......................... 223、 了解人工智能的理论能力和局限性 ..................... 224、 研究通用人工智能 ................................... 235、 开发可扩展的人工智能系统 ........................... 246、 促进类人的人工智能研究 ............................. 247、 开发更强大和更可靠的机器人 ......................... 258、 推动人工智能的硬件升级 ............................. 269、 为改进的硬件创建人工智能 ........................... 26(二) 战略二:开发有效的人类与人工智能协作方法 ............ 281、 寻找人类感知人工智能的新算法 ....................... 292、 开发增强人类能力的人工智能技术 ..................... 303、 开发可视化和人机界面技术 ........................... 304、 开发更高效的语言处理系统 ........................... 31(三) 战略三:了解并解决人工智能的伦理、法律和社会影响 .... 331、 改进公平性、透明度和设计责任机制 ................... 332、 建立符合伦理的人工智能 ............................. 345 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 3、 设计符合伦理的人工智能架构 ......................... 34(四) 战略四:确保人工智能系统的安全可靠 .................. 361、 提高可解释性和透明度 ............................... 362、 提高信任度 ......................................... 363、 增强可验证与可确认性 ............................... 374、 保护免受攻击 ....................................... 385、 实现长期的人工智能安全和优化 ....................... 38(五) 战略五:开发用于人工智能培训及测试的公共数据集和环境 391、 开发满足多样化人工智能兴趣与应用的丰富数据集 ....... 392、 开放满足商业和公共利益的训练测试资源 ............... 403、 开发开源软件库和工具包 ............................. 40(六) 战略六:制定标准和基准以测量和评估人工智能技术 ...... 421、 开发广泛应用的人工智能标准 ......................... 422、 制定人工智能技术的测试基准 ......................... 423、 增加可用的人工智能测试平台 ......................... 434、 促进人工智能社群参与标准和基准的制定 ............... 44(七) 战略七:更好地了解国家人工智能人力需求 .............. 46三、 建议 ...................................................... 471、 建议一 ............................................. 472、 建议二 ............................................. 47附录:首字母缩写词 ............................................. 48译者注 ......................................................... 506 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 摘 要人工智能(AI)是一种具有巨大社会和经济效益的革新性技术。人工智能有可能彻底改变我们的生活、工作、学习、发现和沟通的方式。人工智能研究可以推进美国的国家优先任务,包括增加经济繁荣、改善教育机会和生活质量,以及加强国家和国土安全。由于这些潜在的益处,美国政府已经对人工智能研究投资多年。然而,与联邦政府感兴趣的任何重要技术一样,指导人工智能领域联邦资助研发的总体方向时不仅具有巨大的机会,还必须考虑到一些注意事项。 2016 年 5 月 3 日,政府宣布成立一个新的国家科学技术委员会(NSTC)机器学习和人工智能小组委员会,以帮助协调联邦在人工智能领域的活动。1 该小组委员会于 2016 年 6 月 15 日,请求网络和信息技术研究和发展计划(NITRD)小组委员会编写《国家人工智能研究和发展战略计划》(以下简称“AI 研发战略计划”或《战略》)。之后成立了一个 NITRD 人工智能工作组,以确定人工智能研发为联邦的战略重大计划,特别关注产业不可能解决的领域。 这项《战略》为联邦资助的人工智能研究制定了一系列目标,既包括政府内部的研究,也包括联邦资助的政府外部研究,例如在学术界。这项研究的最终目标是产生新的人工智能知识和技术,为社会提供一系列积极效益,同时尽量减少负面影响。为实现这一目标,《战略》确定了联邦资助人工智能研究的以下重大计划: 战略一:对人工智能研究进行长期投资。优先投资下一代人工智能,将促进新发现和洞察力,同时使美国在人工智能领域保持世界领先地位。 战略二:开发有效的人类与人工智能协作方法。并非取代人类,大多数人工智能系统将与人类合作以实现最佳性能。需要研究来创建人类和人工智能系统之间的有效交互。 战略三:了解并解决人工智能的伦理、法律和社会影响。我们期望人工智能技术根据我们持有人类同胞的正式和非正式规范表现。需要研究以了解人工智能的伦理、法律和社会影响,并开发设计符合伦理、法律和社会目标的人工智能系统的方法。 战略四:确保人工智能系统的安全可靠。在人工智能系统广泛使用之前,7 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 需要保证系统将以受控、充分定义和充分理解的方式安全地操作。需要进一步加强研究,以解决创建可靠、可信任和可信赖人工智能系统的挑战。 战略五:开发用于人工智能培训及测试的公共数据集和环境。训练数据集和资源的深度、质量和准确性显著影响人工智能性能。研究人员需要开发高质量的数据集和环境,并允许负责访问高质量数据集,以及测试和培训资源。 战略六:制定标准和基准以测量和评估人工智能技术。人工智能进步极其重要的是指导和评估人工智能进展的标准、测试基准、测试台和社区参与。需要进行额外的研究来开发广泛的评价技术。 战略七:更好地了解国家人工智能人力需求。人工智能的进步将需要一个强大的人工智能研究人员社区。需要更好地了解人工智能当前和未来研发人员需求,以帮助确保有足够的人工智能专家能够应对本计划中概述的战略研发领域。 《战略》最后提出了两方面建议: 建议一:开发一个人工智能研发实施框架,以抓住科技机遇,并支持人工智能研发投资的有效协调,与本计划的第一至六项战略保持一致。 建议二:研究创建和维持一个健全的人工智能研发队伍的国家愿景,与本计划的战略第七项保持一致。 8 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 一、简介(一)《国家人工智能研究和发展战略计划》的目的 1956 年,来自美国的计算机科学研究人员在新罕布什尔州的达特茅斯学院会面,讨论一个新兴的计算分支,即人工智能或 AI 的开创性思想。他们想象了一个世界,“机器使用语言,构成抽象和概念,解决现在人类的问题,并改善自己”。2 这次历史性会议为 AI 的政府和行业研究设置了几十年阶段,包括感知、自动推理/规划、认知系统、机器学习、自然语言处理、机器人和相关领域的进展。今天,这些研究进展已经产生影响我们日常生活的新兴经济部门,从制图技术到语音辅助智能手机,到邮件传递的手写识别,到金融交易,到智能物流,到垃圾邮件过滤,语言翻译,甚至更多。AI 进展也为精准医学、环境可持续性、教育和公共福利等领域的社会福利带来巨大的益处。3过去 25 年来,AI 方法的显著增加在很大程度上得益于统计和概率方法的采用,大量数据的可用性以及计算机处理能力的提高。在过去十年中,机器学习的 AI 子领域,使计算机能够从经验或例子中学习,已经表现出越来越准确的结果,引起了人们对 AI 近期前景更多的兴趣。虽然最近注意到例如深度学习等统计方法的重要性,4 但在其他各种领域 AI 也已经取得了影响深远的进展,例如:感知、自然语言处理、形式逻辑、知识展示、机器人技术、控制理论、认知系统架构、搜索和优化技术以及其他更多方面。 (注:深度学习是指使用多层神经网络的一系列方法的汇总,这些方法支持快速完成一度被认为无法自动化完成的任务。)AI 的最近成就对这些技术的最终方向和影响已经产生了重要问题:当前 AI技术的重要科学和技术瓶颈是什么?新的 AI 进展将提供什么积极,需要的经济和社会影响?如何继续安全和有益地使用 AI 技术?如何设计 AI 系统以符合伦理、法律和社会原则?这些进步对 AI 研发人员的影响是什么? AI 研发的情况变得越来越复杂。虽然政府过去和现在的投资造就了 AI 的突破性方法,但其他部门也已成为 AI 的重要贡献者,包括广泛的行业和非营利组织。这种投资环境提出了关于联邦投资在 AI 技术发展中适当作用的重要问题。联邦对 AI 投资的正确优先事项是什么,特别是在行业不可能投资的领域和时间框架方面?是否有机会进行产业和国际研发合作,推动美国的优先事项? 9 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 2015 年,美国政府对 AI 相关技术的未分类研发投资约为 11 亿美元。虽然这些投资已经产生了重要的新科学和技术,但是仍有机会在联邦政府之间进一步协调,使这些投资能够充分发挥潜力。5认识到 AI 的革新性影响,2016 年 5 月,白宫科学和技术政策办公室(OSTP)宣布了一个新的跨部门工作组,以探讨 AI 的利益和风险。6 OSTP 还宣布了一系列四个研讨会, 举办于 2016 年 5 月至 7 月的一段时间,旨在促进 AI的公众对话,并确定其所带来的挑战和机遇。研讨会的结果是伴随公共报告《为人工智能的未来准备》的一部分,与该计划一起发布。 在 2016 年 6 月,新的 NSTC 机器学习和人工智能小组委员会 - 它被特许在联邦政府、私营部门和国际上与 AI 的进展保持同步,并帮助协调联邦在 AI 的活动,任命 NITRD 国家协调办公室(NCO)创建《国家人工智能研究和发展战略计划》。小组委员会指示本计划应传达一系列明确的研发优先重点,以解决战略研究目标,将联邦投资重点放在行业不太可能投资的领域,并解决扩大和维持 AI 研发人才渠道的需求。 本 AI 研发战略计划的输入来自广泛的来源,包括联邦机构、AI 相关会议的公开讨论、投资于 IT 相关研发的所有联邦机构的 OMB 数据呼叫、投资 IT 相关研发,OSTP 信息请求 RFI),该信息请求向公众征询了有关美国如何为未来的 AI7做出最佳准备的意见,以及 AI 公开出版物的信息。 该计划对 AI 8的未来做出多个假想。首先,假设 AI 技术将继续发展至复杂巧妙并无所不在,而这多亏了政府和行业对 AI 研发的投资。第二,本计划假设AI 对社会的影响将继续增加,其中包括就业、教育、公共安全和国家安全,以及对美国经济增长的影响。第三,假设行业对 AI 的投资将继续增加,因为最近的商业成就已增加了研发投资的预期回报。同时,本计划假设一些重要的研究领域不太可能获得来自行业的足够投资,因为它们受制于典型的公共物品投资不足问题。最后,本计划假设对 AI 专业的需求将继续在行业、学术界和政府内部增长,从而对公共和私人造成劳动力压力。 与 AI 研发战略计划相关的其他研发战略计划和方案包括《联邦大数据研究和发展战略计划》、9《联邦网络安全研究和发展战略计划》、10《国家隐私研究和发展战略》、11《国家纳米技术倡议战略计划》、12《国家战略计算计划》、13《推进创新神经技术脑研究计划》14 与《国家机器人方案》。15 涉及某10 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 些 AI 子领域的其他战略研发计划和战略框架处于发展阶段,其中包括视频和图像分析、健康信息技术、机器人和智能系统。这些额外计划和框架将提供补助和详细叙述本 AI 研发战略计划的协同建议。 (二)预期结果 本 AI 研发战略计划超越了近期的 AI 功能,着眼于 AI 对社会和世界的长期变革影响。AI 的最新研究进展让 AI 的潜力更为乐观,使行业得到迅猛发展,并让 AI 方法变得商业化。然而,虽然联邦政府可以利用 AI 的行业投资,但许多应用领域和长期研究挑战不会存在明确的近期利润驱动因素,因此不可能完全由行业进行解决。联邦政府是长期高风险研究计划以及近期发展工作的主要资金来源,以实现部门或机构的具体要求,或解决私营企业并不从事的重要社会问题。因此,联邦政府应该强调重大社会重要性领域内的 AI 投资,这不针对消费市场的领域,如用于公共卫生、城市系统与智慧社区、社会福利、刑事司法、环境可持续性和国家安全的 AI,以及加速 AI 知识和技术生成的长期研究。 跨联邦政府的 AI 协调研发工作将增加这些技术的积极影响,并为决策者提供用于解决与使用 AI 相关的复杂政策挑战的所需知识。此外,协调方法将有助于美国利用 AI 技术的全部潜力来改善社会。 本 AI 研发战略计划定义了一个高级框架,该框架可用于确定 AI 的科学和技术差距,并跟踪用于填补这些差距的联邦研发投资。AI 研发战略计划确定了AI 短期和长期支持的战略优先事项,以此来解决重要的技术和社会挑战。然而,AI 研发战略计划并未为个别联邦机构定义具体的研究议程。相反,其为行政部门设定了目标,在这些目标中,各机构可以根据其任务、能力、权威和预算来决定优先顺序,以便整个研究组合能与 AI 研发战略计划保持一致。 AI 研发战略计划也并未制定 AI 的研究或使用政策,亦未就 AI 对就业和经济的潜在影响作更广泛的探讨。虽然这些议题对国家至关重要,但它们在题为“人工智能的机遇和挑战,这次会有所不同吗?”8 的经济顾问委员会报告中进行了讨论。 AI 研发战略计划侧重于有助定义和推进确保 AI 责任、安全和权益用途的政策的研发投资。 11 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 (三)利用人工智能推进国家优先事项的愿景 推动此 AI 研发战略计划是未来世界充满希望的愿景,AI 将给所有社会成员带来显著益处。人工智能的进一步进展可以提升社会中几乎所有部门的福利,16让国家优先事项获得进展,其中包括促进经济发展、改善生活质量和加强国家安全。这种潜在利益的例子包括: 1、促进经济发展新产品和服务可以创造新市场,并提高多个行业现有商品和服务的质量和效率。通过专业决策系统创造更有效的物流和供应链。17通过基于视觉的驾驶员辅助和自动/机器人系统,18 能更有效地运输产品。通过用于控制制造工艺和调度工作流程的新方法来改善制造业。19如何促进经济发展? (1)制造业:技术进步能在制造业,包括整个工程产品生命周期内引发新工业革命。更多使用机器人技术能使制造业回归陆上。20AI 可以通过更可靠的需求预测、提升运营和供应链灵活性,以及对改变制造业营运的影响进行更好的预测来加速生产能力。AI 可以创造更智能、更快、更便宜和更环保的生产流程,这能提高工人的生产率、提高产品质量、降低成本并改善工人的健康和安全。21 机器学习算法可以改善制造流程的调度并减少库存要求。22 消费者可以从现时的商业级 3-D 打印中获利。23(2)物流:私营部门制造商和托运人可以使用 AI,通过适配调度和路线来改进供应链管理。24通过自动调整天气、交通和意外事件的预期影响,让供应链更加牢固难以中断。25(3)金融:工业和政府可以使用 AI 提供多种规模的异常金融风险早期检测。26安全控制可以确保金融系统自动减少恶意行为的机会,例如市场操纵、欺诈和异常交易。27他们可以进一步提高效率并降低波动性和交易成本,同时预防系统性失效,例如定价泡沫和低估信用风险。28(4)交通:AI 可以增强所有交通方式,实质上影响所有类型的旅途的安全。29它可以用于结构安全监测和基础设施资产管理,提高公众信任,降低维修和重建成本。30 AI 可用于乘客和货运车辆,从而通过增强情景意识来提高安全性,并为司机和其他旅客提供实时路线信息。31 AI 应用还可以改善网络级移动12 美国国家人工智能研究与发展战略计划 中国信通院(CAICT)编译组整理 13 性并减少整个系统的能源使用和运输相关的排放。32(5)农业:AI 系统可以创建通往可持续农业的途径,使农业产品的生产、加工、储存、分配和消费更灵活。AI 和机器人能收集有关作物的特定场所和时间数据,仅在它们需要的时间和地点才应用所需的投入(例如水、化学品和化肥),并填补农业劳动力的紧迫缺口。33(6)营销:AI 方法能使商业实体更好地配合供应与需求,增加用来资助进行中资助私营部门发展的税收。34 其能预测和识别消费者需求 35,使他们以更低的成本获得更好的产品和服务。 (7)通信:AI 技术可以最大限度地有效利用带宽和信息存储和检索的自动化。36 AI 可以改进数字通信的过滤、搜索、语言翻译和摘要,积极影响商业和我们的生活方式。37(8)科学和技术:AI 系统可以协助科学家和工程师阅读出版物和专利,使理论与之前的观察值更一致,使用机器人系统和模拟、进行实验,并设计新的设备和软件。382、改善教育机会和生活质量通过用于制定专有学习计划的虚拟导师来实现终身学习,以此根据每个人的兴趣、能力和教育需求进行自我挑战和参与其中。通过为每个人定做和调整的个性化健康信息,让人们能过上更健康和更积极的生活。智能家居和个人虚拟助手可以节省人们的时间,并减少每日重复任务所损失的时间。 AI 将如何改善教育机会和社会福利? (1)教育: AI-增强的学习型学校随处可见,通过其自动化辅导能衡量学生的发展 16。 AI 辅导员可补充面授教师,还可以因材施教。16 AI 工具可以促进终身学习并让所有社会成员获取新技能。16(2)医学:AI 能支持从大规模基因组研究(如全基因组关联研究,排序研究)中识别出遗传风险的生物信息学系统,并预测新药物的安全性和有效性。39 AI 技术允许进行多维度的数据评估,以研究公共卫生问题,并为医疗诊断和处方治疗提供决策支持系统。40 AI 技术为个人提供药物定制;由此可提高医疗效果、患者舒适度和减少浪费。41(3)法律:通过机器对法律个案史进行分析会变为普遍。42

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。