介绍下数据标注平台的运营模式

    目前AI行业发展火热各大巨头都投入巨资在此领域布局,智能驾驶、人脸识

别以及近段时间正火的AI养猪都是AI技术应用在实际生活上的体现,毫不夸张的说AI

技术正在逐渐改变我们的生活而我们的生活也将因此变得更美好。

     AI的发展离不开数据标注的支持,而目前AI行业庞大的数据标注工作都 是通过 哪

种模式完成的呢?

    

一、常见的数据标注平台

由于数据标注的重要性和高质量标注好数据的稀缺性在催生了一大批专职做数据标注团队的同时也催生了一批数据标注平台,比较有名的有百度众测、京东众智、龙猫数据、数据堂等。众所周知百度在互联网大厂是最早开始且投入巨资研Ai 技术的,所以百度众测平台的任务大部分都是百度内部的需求,他们也会接受其他AI公司的数据需求,但是在数据量和价格上会有限制。相比百度而言其他几家数据标注平台就比较亲民一些了,中小型的AI公司的需求一般都会接受。为什么这个地方没有提到大型AI公司呢?那是因为大型AI公司一般都会自建平台且有专门的数据标注团队负责公司的数据需求。

二、数据标注平台的业务模式

(1)众包模式:
现在数据标注通常采取众包的模式,众包模式的优点就是成本较低响应较快。这种模式适用较简单的项目如点点拉框等项目。发布者往往将任务详细介绍和题目一同发送到平台上供广大数据标注兼职人员作答。但众包模式有一个很明显的问题就是质量较难把控,因为众包模式是面向大众的你并不知道在给你做标注的是什么人,他们可能是厨师,是全职太太,是老师每个人对规则的理解不尽相同且不可避免的会有一部分对任务乱答一通影响项目质量。为此各平台也会使用一些方式减少问题的产生提高项目质量。比如增加改判环节一道题在答完之后会由他人进行改判如若判错则不获得任务报酬,此外为防止错判维护答题人员利益还会设置申诉环节使答题人员对有疑问的题目进行申诉。设置标注人员级别,标注人员任务正确率较高答题数较多则能慢慢提高等级解锁更多任务获得更多的任务报酬且有机会进入改判环节成为改判员。
(2)外包模式
外包模式与众包模式相对是将任务外包给专门的数据标注公司和团队,在项目一开始会对项目整体进行评估然后针对项目整体进行报价由数据标注公司自行安排培训安排人手,只需要保证在项目截止日期前保质保量交付数据即可。这种模式的优势就是数据质量和项目周期有保证。但是响应速度较慢成本较高,因为一开始需要安排竞标且平台需要安排专门的项目人员进行项目对接和项目跟进。现如今国内专门做数据标注的团队较多,但是大多数只是以工作室和几十人的小团队为主且业务类型集中在简单的拉框图像标注上。也有一些的较大型的公司如贵州的梦动科技已经形成产业化带动了当地的发展。又或者是“点我科技”他们自建有平台可以自研工具同时担任着数据标注平台和数据标注公司两种角色。
基于以上两种业务模式的答题模式:
A模式:A模式指只进行一次答题模式,后续没有改判操作。这种模式应用较少主要用于较简单正确率要求不高的项目。
AC模式:AC模式指在答题完成后会有一个改判流程,改判员只能对题目进行正误的判断不能在答题的基础上进行操作。
ACC模式:ACC模式和AC模式的主要区别是AC模式不能够之前的答题情况作出更改,而ACC可以更改。


三、制约数据标注平台发展的因素

  1. 业务模式
    一个好的业务模式能不断拔高一个平台的业务上限,上面介绍的两种常见的业务模式(众包模式和外包模式)因为他们都有各自的优缺点,所以单一的使用任何一种业务模式都是不可行的。单存使用众包模式会带来项目质量难以把控,风险高的问题,且众包模式只适合承接比较简单的需求。单一使用外包模式则会造成对数据标注团队的过度依赖,降低整个平台的活力,造成平台现有人力资源的浪费。
    对此我们需要两种模式兼用初期需要投入一定的资源建立自已平台的众包团队,这个人数一定要多只有这样才能保证有足够的活跃人数能够完成数据标注任务,同时还要一直有众包任务才能保证这些人一直活跃。众包团队建立起来之后我们就可以将简单的任务通过众包模式发放出去,一些复杂专业性比较高的任务则通过外包模式发放出去即可。

  2. 数据标注团队
    一个数据标注平台必须要足够的数据标注团队才能承接更多的需求,为了增加平台上入驻的团队数量我们需要提高平台内部的活跃度同时平台上有足够的任务。每个标注团队往往都有擅长的业务类型,我们也需要根据不同团队的特点发放给他们不同的任务。

  3. 任务需求
    一个平台要想不断发展一定要有足够的任务,增加平台承接的任务则需要提高平台的知名度,提高平台的知名度可以通过广告投放,客户口碑传播,搜索优化等方式。同时还需要一个有力的商务团队。

timg (1)_meitu_2.jpg


参考原文地址:https://blog.51cto.com/14065470/2355532

推荐文章

教育行业内已经普遍认可“人工智能+教育”的重要性了,但当我们在大谈特谈 AI 如何重构教育时,它又会面临哪些真正的挑战?7月13日,新东方 AI 研究院院长瞿炜来到 2019 钛媒体 T-EDGE 科技生活节谈了谈他的看法。作为一家创立已经26年的老牌教育巨头,新东方积极拥抱新技术。在瞿炜看来,未来 AI 大势不可阻挡,“AI +教育”是新东方承担历史责任,必须要全力以赴。在 AI 浪潮席卷各个产业的大背景下,去年,新东方教育科技集团成立了 AI 研究院。据瞿炜介绍,新东方 AI +教育的作战地图,主要从从教、学、考、评、测、练等维度进行,结合线上和线下的混合学习、学科维度等场景落地。不过,就在他们这一年间快速落地“AI +教育”的时候,也发现了许多意想不到的挑战。这些挑战体现在语音识别、人脸识别、文字识别、自然语言处理,以及 AR 与 VR,几乎涵盖“AI +教育”的所有场景范畴。就在行业热捧“AI 教师”的趋势下,瞿炜提出了一个值得注意的观察,他们通过研究市场上所有做 AI 教师直播课的产品,得出一个规律,无论产品模拟真人多么逼真,在8分钟之类,基本上学生都能发现 AI 教师是一个假人。而在谈论 AI 变革行业,在具体落地场景时,我们也应当明确,行业也在发生变革与分化,不同行业的 AI 有截然不同的一套理论、算法和系统。(本文首发钛媒体,作者/李程程)以下是新东方AI研究院院长瞿炜在2019 钛媒体 T-EDGE 科技生活节的演讲全文,经钛媒体编辑:大家好,非常高兴今天受钛媒体邀请参加分享,刚才也听到了非常振奋人心的消息,今天是一个好日子,祝贺赵总今天融资1个亿。这个时代科技和AI,某种程度上成为科技会议代名词,作为一个做AI做了20年的学者,我想分享一点我们不同的看法。我今天的题目既和教育相关也和AI相关,但是稍微不一样的是,到底谁在变革谁?先介绍一下新东方,大家对新东方很熟悉了,不太一样的是,我们最新的数字大家未必很清楚。新东方除了英语学习很有名,其实在中小学全科教育,在中国也帮助了很多的孩子。新东方现在有1200个校区,5万间教室,6万名老师,去年班教超过1000万名学生。当我们谈论AI+教育的时候,意味着有海量的数据,同时还拥有中国乃至世界上最全的教育场景,从3到30岁几乎全覆盖。新东方在去年成立了新东方AI研究院,就是NAIR。新东方有26年的历史,这是非常年轻的团队,在新东方里是很新的团队,我们希望这支全新的团队能够跑得最快。未来AI大势不可阻挡,AI+教育是新东方承担历史责任,我们要全力以赴。我们希望有更多的才俊投入到“AI+教育”造福全世界事业当中。借着新东方平台,把AI+教育系统、产品快速实现大规模应用,不仅是一个创业的团队,我们更希望能够和现有业务紧密结合,和外面公司相比落地能力和技术更快。同时,我们进行商业模式创新;和投资伙伴一起构建AI+教育生态和跨领域合作。简单谈一下AI变革教育,我们认为教育AI作战地图,新东方怎么做呢?我们从教、学、考、评、测、练等维度,同时也从AI技术维度、场景维度,无论是线上线下混合学习、学科维度共享这样一个作战地图。举几个小小的例子,也是我们在过去一年快速落地的场景。案例一,透明课堂。传统课堂是一个黑盒子,大家上过学也感同身受,教学质量更多时候靠老师的自觉和随机抽查而已,是一个很传统行业。当AI来了以后,一切发生巨大的变化,我们称之为“AI深度感知平台”,这个项目在新东方快速落地了,推出了一个边缘计算设备,称之为小N引擎。第一个落地的项目在做“管”的层面,推出了“小n督课”,在很多城市、新东方几百个小区规模化的试点。今年新东方决定投资1个多亿,在新东方所有校区、所有教室落实督课,未来的新东方不光老师好,什么才叫老师好,AI告诉你。案例二,教育在如何变革AI。大家可能很少听到,但是作为在一线实战的,深刻体会到如今的AI不光是大家耳熟能详变革这个、变革那个,当AI和传统行业结合的时候,通用化的AI已经不够了。举几个例子,大家听过我的演讲大家感受到了,比方说我们进入教育的行业,我们会发现传统AI尽管在很多通用场景,但也面临很多挑战。语音识别的挑战。比方说我在这里演讲,如果没有科大讯飞、微软百度引擎做语音识别,如果接入从麦克风接入的话,准确率达到99%是没有问题的,但是如果识音器在距离我20米之外,如果还有一定噪音的话,识别率直线下降的。但是在真实实战场景理想状态不存在,语音识别面临很多问题。人脸识别的挑战。也是一样的,我们试图做行为分析,但新东方不做监控学生的事情,我们做的是提高教学质量,做的是有温度的AI,即使你这样做的时候,你会发现特别有挑战。你希望低成本,用最快的速度把AI的产品技术惠及更多的人,意味着更大挑战。你用最普通的摄像头做这件事情的时候你会发现,无论是超低分辨率、强大即便角度、遮挡下的人脸,这远比无人驾驶更现实的问题。文字识别的挑战。OCR技术作为一个极其传统的技术,因为每个人手机几乎都用手指识别,进入教育行业大家发现如此挑战,你试图用一个手写板解决所有问题,不现实。因为你改变不了学生使用习惯,相当长一段时间之内还是会接受纸质板。如何线上线下结合,解决文字问题就会难倒一众教育公司。自然语言处理的挑战。如果一个聊天场合,机器人不知道怎么办的时候可以闲聊,可是教育不是。当你教一个学生的时候,学生希望在最短的时间里知道准确答案。这个挑战我认为可能在一众的英文行业里面是最大的。AR/VR的挑战。可实时交互的AI老师,从去年开始,如何用一个模型让你看不出它是一个假的人,逼真度要做到绝对逼真,有非常多的问题,除了图像上的问题,还有声音上的问题。我们做了一个实验,把市场上所有做AI直播做了一个测试,有一个规律发现,很少能挺过8分钟,8分钟之内基本上一个孩子能够发现这是一个假人,这对于AI+教育这件事来说是一个巨大挑战——如何挺过8分钟乃至于80分钟?机器学习的挑战。大家普遍接受这个词了,过去5年大家对它不是很熟悉,被热炒一番以后。实际上机器学习才刚刚开始,现在AI是一个两三岁的孩子,我们做这行人来讲,连两三岁都不到。人从猿进化而来的,但是不能说人就是猿。大家总会去讲AI能够变革这个、变革那个,但是实际上从做AI的人来讲,当AI和教育结合的时候,AI不仅变革传统行业,真正落地的话,行业也在变革分化,不同行业的AI有截然不一样的理论、算法和系统。我们重构教育AI能力体系,所有这些技术都是打引号的。联合行业内顶级合作伙伴一起做这件事情,这件事情难度非常大,实际上刚刚开始。不光要靠像新东方这样既有数据、又有场景同时有众多资源公司、行业龙头企业去做,同时需要最顶级研究机构加入,我们在进行深度合作,实际上是很开放的。给大家做一个小小的广告,如果有意愿从事AI+教育领域,无论是创业还是投资的朋友们,包括各个产业链条上的朋友们,如果愿意去投资AI+教育的未来的话,新东方绝对是你最好的合作伙伴。最后一句话,“携手一起努力,让AI在教育领域落地开花”。

热门文章

        对数据标注行业稍微有些了解的人都知道数据标注进入门槛低,适合很多人兼职也适合创业。        正是因为数据标注行业的门槛低这个特点最近两年从事数据标注的小公司小工作室如雨后春笋般的遍布全车大大小小的县城。        但是目前有个有趣的现象,那就是有很多进入数据标注行业做了一段时间的人慢慢的感觉数据标注行业就是个坑?为什么有些人会说数据标注就是个坑呢?        其实对与有上述问题认识的人我们认为,这些人多数都是有于对这个行业对自身条件的不了解,盲目的开始进入数据标注行业的。为什么我们会这样说呢?下面就给给大家来分析下到底有哪几方面的原因:        一、有相当一部分人是听了朋友或者网上消息说这行很火爆,好做,门槛低,也有一部分人了因此租办公室买电脑招人,然后就去群里面找分发项目的人就开张干起来了。可实际上这些人他们大多数都没有充分了解数据标注行业,更没有认真仔细得去调查分析,到底自己能不能做好一个项目,到底自己能不能有质有量按时交付的完成一个项目,到底自己有没有这个能力来管理项目。更多的人也没有去用长远的眼光去考虑数据标注项目。        二、数据标注项目虽然入门门槛低,但是相当一部分有于理解认知应变能力上都不能保证去做好数据标注项目,还有一部分人由于自己对标注项目重视程度不足接到项目之后呢?不仔细认真的去阅读理解项目规则,更没有很好的对规则质检标准去培训员工,而对员工的要求主要看重每天的产出效率,从而导致接到手的项目做的质量很差,频繁的返工,有提项目甚至因为质量太烂项目方不给结算或者是结算比例很少,最终的结果就是做好些个项目但基本都是赔钱。        三、虽然业内人都 说数据标注简单,但是标注项目他也是一个系统性的工程,一个项目能不能做好并不简单的看项目好做就能赔钱。实际上决定项目赚不赚钱考验的是一个团队的项目管理水平,质量管理能力,运营能力各方面因素的。一句话再好赚钱的项目也照样有人赚钱也有人赚钱,要赚钱不是那么简单的。        四、还有些工作室 、小公司因为对行业不够了解等他们做了一段时间后发现,自己团队经常会没有项目做,而自己团队接项目的业务能力又不具备,甚至有的时候为了员工有活干去接一些价格极低根本就不赚钱的标注项目,时间稍微一长这些工作室团队就会赔上很多钱最终关门倒闭。        五、下来要说的就是一部分人人兼职人员由于认识不到位,对项目的规则质量要求 文件不认真阅读消化理解导致做的项目质量差返工有的甚至最后不结算,最终退出这行。更有一些人由于经验不足被标注行业的项目骗子给忽悠到辛苦劳动到最后结算时找不到人。        标注行业本身由于进入门槛低,做的人很行业内盲目打价格战,导致很多转手二手三手的项目在质量工期的要求下根本就不赚钱甚至赔钱,所以在这里也提醒大家做任何事都要谨慎而行。